Project description
Pioneering carbon nanotube cooling technology unleashes processing power
Electronics dissipate energy as heat, and heat damages electronics; therefore, cooling systems are critical to performance and stability. Currently, heat pipes are the preferred cooling technology for mobile devices. Heat pipes are small-diameter pipes for high-efficiency, passive and compact heat transfer over a relatively large surface, allowing low heat flux to dissipate through the device cover to ambient air. Heat pipe cooling technology has not changed much in recent decades, and an update is needed to unleash the full power of modern processors. The EU-funded HEAT project is developing high-tech foams made of carbon nanotube composites processed with innovative technology to control pore size and thermal conductivity.
Objective
Modern electronic devices have flourished because of the relentless development of new lithographic processes that result in ever higher and more compact computing power. However, this increases the amount of heat generated in a decreasing volume. As a result the computing power of many modern processors is truncated to avoid thermal damage.
The preferred cooling technology for portable electronic devices are heat pipes. While this technology allows for impressive cooling performances, heat pipes have essentially remained unchanged for the past four decades, and are unable to satisfy the cooling requirements of modern processors. This project seeks to maximize the performance of heat pipes made using a new ultra-fast co-electroplating process that allows for the fabrication of an entirely new type of heat pipe material. Specifically, the developed process allows fabrication of 3D foams with microscale geometries (microfoams) that are made out of a carbon nanotube-copper composite. These foams exhibit capillary driven flowrates 250% that of commercial heat pipe foams, which is expected to provide a similar step-change improvement in heat pipe cooling power. The fabrication process itself is also disruptive because it enables an unprecedented control over the metal foam porosity and leverages the ultra-high thermal conductivity of the used nanoparticles. Further, our process is more energy efficient than current thermal sintering processes and it potentially allows for a continuous fabrication process.
Because of the combined advantages in cooling performance and efficiency of the manufacturing process, this developed technology could displace current heat pipes. However, to take this technology forward, it requires support from this ERC-POC project to study the scale-up of the manufacturing process as well as to develop heat pipe demonstrators.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering manufacturing engineering
- engineering and technology materials engineering composites
- natural sciences mathematics pure mathematics geometry
- engineering and technology nanotechnology nano-materials
You need to log in or register to use this function
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.