Project description
Gaining new insight into the physics of ultracold bosons
Atomic gases cooled down to ultralow temperatures of a few nanokelvin above absolute zero offer an outstanding platform for investigating quantum phenomena in many-body systems. The ability to control the interactions between ultracold atomic gases coupled with techniques such as optical box traps allows scientists to study a range of multi-body physics phenomena in controlled conditions. The EU-funded project CriticalBoseBox will create a Bose–Einstein condensate (ultracold bosons) in an optical box trap to experimentally study the critical behaviour of such a gas near its condensation temperature. Project results will put Europe at the forefront of atomic physics and quantum optics research.
Objective
Studies of homogeneous quantum gases, trapped in uniform optical-box potentials, bridge the fields of ultracold atoms and condensed matter physics. Being versatile and well-isolated systems, ultracold atoms offer an outstanding platform for engineering quantum many-body systems. Due to the variety of high precision measurement techniques from atomic physics, they can be used as analogue quantum simulators for addressing open questions in the physics of strongly correlated systems.
This proposal suggests using ultracold bosons with tuneable interactions and trapped in uniform box potentials to experimentally study the critical behaviour of a Bose gas near its condensation temperature Tc. The project focuses on problems in beyond-mean-field physics that cannot be effectively tackled using the traditionally studied harmonically trapped gas. One key objective is the first measurement of the long-debated non-perturbative Tc shift due to interactions, which is a sensitive probe of the critical behaviour happening on all length scales. In addition, the project addresses critical scalings near Tc, which will be investigated through equilibrium and non-equilibrium measurements. In particular, experimental access to the critical slowing down of equilibration near Tc should allow a direct measurement of the dynamical critical exponent z, which is not possible with liquid helium. The proposed experiments will cover the full range of interaction strengths from non-interacting atoms to the largely unexplored unitary regime, where the interactions are as strong as allowed by quantum mechanics. This will also allow a study of the effect of the interaction strength on the size of the critical region and on the robustness of the universal critical behaviour.
This proposal stands at the forefront of the field of quantum simulation and its results should have an impact beyond the atomic physics and quantum optics communities, strongly reinforcing European excellence in physics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry noble gases
- natural sciences physical sciences atomic physics
- natural sciences physical sciences optics
- natural sciences physical sciences quantum physics quantum optics
- natural sciences physical sciences condensed matter physics quantum gases
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.