Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Coherent Optomechanical and Hyperfine interactions Engineering with Silicon-Vacancy impurities in diamond for quantum networks

Description du projet

Le traitement de l’information quantique compte sur les défauts des diamants

Le traitement de l’information quantique promet d’augmenter considérablement l’efficacité du calcul de problèmes que les ordinateurs conventionnels actuels peuvent difficilement traiter. Il exploite la puissance de la mécanique quantique qui encode les 0 et les 1 en qubits. Financé dans le cadre du programme Marie Skłodowska-Curie, le projet COHESiV a pour objectif d’exploiter les remarquables propriétés optiques, mécaniques et de cohérence de spin d’un nouveau qubit, le centre de vacuité du silicium dans le diamant, et d’en faire un élément central du réseau quantique pour la mise en œuvre du traitement de l’information quantique. L’accent sera mis sur l’enchevêtrement efficace de deux bits quantiques et le stockage des informations quantiques dans un registre quantique à longue durée de vie.

Objectif

The proposal COHESiV aims to establish a novel physical system with ideal properties for the realisation of quantum networks. Quantum information processing (QIP) promises to drastically increase computation abilities and thus unlock key computational problems with wide ranging benefits. An outstanding issue is however the choice of the fundamental building block to implement QIP. COHESiV's goal is to take advantage of the remarkable optical, mechanical and spin coherence properties of a novel quantum bit, the silicon-vacancy centre (SiV) in diamond and establish it as a central component of quantum networks for the implementation of QIP. To do so, COHESiV addresses two crucial operations on which standard quantum algorithms are based: entangling two quantum bits efficiently and storing quantum information in a long-lived quantum register. COHESiV’s objectives are to 1) Interface the spin of a single SiV with a well-defined vibrational mode (phonon) of a mechanical resonator 2) Demonstrate phonon-mediated entanglement between two SiV spins 3) Take advantage of long-lived neighbouring nuclear spins to store and retrieve a quantum state encoded in the SiV spin. Owing to the fact that the strong coupling regime between spin and phonon will be attainable with current mechanical resonators thanks to the remarkably large strain susceptibility of the SiV spin, COHESiV will also aim to open the new field of quantum acousto-dynamics, analogous to quantum electrodynamics, where phonons replace photons. Those objectives will be achieved by combining the expertise of the researcher on the physics of the SiV centre with the state-of-the-art design and fabrication of diamond nanostructures of the outgoing phase partner and the breakthroughs in QIP with a comparable physical system at the host institution.

Coordinateur

TECHNISCHE UNIVERSITEIT DELFT
Contribution nette de l'UE
€ 253 052,16
Adresse
STEVINWEG 1
2628 CN Delft
Pays-Bas

Voir sur la carte

Région
West-Nederland Zuid-Holland Delft en Westland
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 253 052,16

Partenaires (1)