Project description
New research sheds light on how massive stars form
Circumstellar discs are an essential ingredient in the formation of low-mass stars just like our Sun. This process is not necessarily the same during the formation of more massive stars – about eight solar masses greater. The EU-funded Magik Star project will further investigate this long-standing problem for astrophysicists. Building on recent successful research linking colliding flows with the formation of high-mass stars, researchers will combine these research outcomes with magnetic field studies, which have also proved important in the star formation process. Numerical work will be complemented by experimental observations in the ALMA radio telescope. Results will provide further details about massive star formation, which until now has been scarce as these stars are rare.
Objective
Star formation is a fundamental process in astrophysics, which has been studied for decades. As of now, most of our knowledge is concentrated on the formation of stars of a few solar masses. If galaxies' total stellar mass is dominated by low-mass stars, their energy budget is exclusively controlled by the enormous luminosity and powerful feedback of massive stars (M > 8 Msun). Despite their importance, the mechanisms leading to the formation of high-mass stars remain a mystery in many aspects. From the theoretical point of view, low-mass star formation models are not directly transposable as they do not provide accretion rates in line with what is necessary for high-mass star formation. From the observational point of view, until the recent rise of large interferometers, little was known about the formation of massive stars due to their scarcity, and remoteness. Through my work with interferometers, I have proved that very dynamical processes (colliding flows) are at play in high-mass star-forming regions (HMSFR). On the other hand, recent studies have shown that magnetic fields are a key factor in the regulation of star-formation. I am convinced that the dynamical features observed in HMSFR coupled with the action of the magnetic fields could explain for the formation of high-mass stars. For this two-year project, I plan on studying the coupling of gas dynamics with magnetic fields. For this purpose, I present an innovative project that will study this coupling simultaneously from observational and numerical inquiries. I will use today's best instrument in radio-astronomy, ALMA, to trace both the kinematics of gas and the magnetic field morphology. This observational part relies on data that I have already acquired. For the numerical part, I will participate in the development of dedicated magneto-hydro-dynamical simulations together with P. Hennebelle to understand the physical processes that underlie the observational features.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy astrophysics black holes
- natural sciences physical sciences astronomy observational astronomy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.