Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Symbol Elimination in Reliable System Engineering

Project description

Moving into an era of reliable, error-free software

In a world that increasingly relies on software for everything we do, information technology companies are increasingly being challenged to build reliable and secure software from the ground up. To this end, they are investing in formal automated reasoning. The EU-funded SYMELS project was established to figure out which automated reasoning techniques, using precise mathematics and rigorous logics, are most suitable for proving error-free software, and how to apply these techniques to large-scale code bases. The project sought to address these challenges by introducing a new method for programme analysis: symbol elimination. Using first-order theorem proving, symbol elimination can prevent programmers from introducing errors while making changes in software.

Objective

We are living in a world that is increasingly run by software. Daily activities, such as online banking, mobile communications and air traffic use, are controlled by software. This software is growing in size and functionality, but its reliability is hardly improving. We are getting used to the fact that that computer systems are error-prone and insecure. To (re)gain the trust of end-users in software and Web services, formal automated reasoning is one of the main investments made by ICT companies in preventing software errors. To improve in this area, one should answer some important questions, such as

- Which methods in automated reasoning are the most appropriate for proving software error-free?

- What needs to be done to apply research in automated reasoning to large-scale code bases?

Our SYMELS project aims at answering these questions by bringing our symbol elimination method to the ICT market. The key innovation brought in by SYMELS is the ability to automatically generate and prove first-order properties of software that prevent programmers from introducing errors while making changes in this software. Our initial results show that symbol elimination can be a breakthrough method: e.g. when testing programs manipulating computer memory it was able to prove that over 80% of test cases are guaranteed to have the expected behavior. Most of these test problems were coming from industry, where similar proofs required very costly human work. Analyzing such programs requires reasoning about program properties in full first-order logic. No other method can reason about such properties with the same accuracy and expressiveness as SYMELS. For the proof-of-concept, SYMELS gives ICT customers and investors a tool-supported methodology for ensuring continuous growth in software functionality, thus increasing software reliability and user's trust in software technologies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-PoC

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
KARLSPLATZ 13
1040 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 150 000,00

Beneficiaries (1)

My booklet 0 0