Project description
Novel algorithms shepherd Big data on its journey through massively parallel systems
The increasing availability of huge amounts of data in fields as diverse as astronomy, protein engineering, climate science and finance offers an opportunity for a step change in understanding and predictive ability. However, to harness the opportunity hidden in all this data, we need increasingly fast, efficient and accurate numerical approaches compatible with high-performance computing systems. This parallel processing on steroids carries risks of propagating and increasing error through the division of labour and regrouping along the way to the final outcome. Handling of floating-point representations of data can be an important source of numerical errors or inaccuracy. The EU-funded Robust project will develop novel algorithms for either faster or more energy-efficient processing that will simultaneously boost the accuracy and reproducibility of the results of scientific computations.
Objective
Computations in parallel environments, like the emerging Exascale systems, are usually orchestrated by complex runtimes that employ various strategies to uniformly and efficiently distribute computations and data. However, these strategies, pursuing excellent performance scalability, may also impair numerical reliability (accuracy and reproducibility) of final results due to the dynamic and, thus, non-deterministic execution as well as non-associativity of floating-point operations. Additionally, scientific computations frequently rely upon only one working precision for computing problems with various complexities, which leads to the significant underutilization of the floating-point representation or the lack of accuracy. The Robust project aims to address the issue of reliable and sustainable scientific computations through developing robust, energy-efficient, and high performing algorithmic solutions for underlying numerical linear algebra solvers and libraries as well as applying these solutions in applications and kernels at scale. The fellow, Roman Iakymchuk, is an expert in numerical linear algebra and high-performance computing and will collaborate with the research team of Prof. Stef Graillat at the Sorbonne University, who are experts in numerical analysis and computer arithmetic. This unique collaboration and combination of skill sets are crucial to embed numerical reliability and sustainability in algorithmic solutions for linear algebra operations and solvers. The derivation of novel robust algorithmic solutions, which will lead to either faster or more energy-efficient execution, will also grant a user an opportunity to specify the expected output accuracy of computations while ensuring optimal intermediate precisions. This ambitious research project in conjunction with formal training and bespoke mentoring will enhance the fellow's academic profile, research experience, and broaden skill set in numerical analysis and computer arithmetic.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics algebra linear algebra
- natural sciences mathematics pure mathematics arithmetics
- natural sciences computer and information sciences computational science
- natural sciences mathematics applied mathematics numerical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75006 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.