Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Unconventional Superconductivity at Microkelvin Temperatures

Project description

Study probes the unconventional superconductivity of bismuth at ultralow temperatures

The discovery of bismuth superconductivity at extremely low temperatures (below 0.53 mK) has stirred up significant interest amongst theoretical physicists. This brittle reddish-grey metal had been dismissed as a possible superconductor because it has a small carrier density. Funded by the Marie Skłodowska-Curie Actions programme, the UCSMT project is planning to further understanding of this unconventional superconductivity in bismuth and in a canonical heavy-fermion metal made from ytterbium, rhodium and silicon. For their study, the project team will develop new measurement techniques tailored to the microkelvin regime.

Objective

A new frontier is the investigation of quantum materials under the extreme conditions of ultralow temperatures. Its exploration requires the refinement of existing high sensitivity, low dissipation measurement techniques, the development of new ones, and access to ultralow temperature platforms. Quantum materials host a variety of exotic quantum phases, arising from interactions and the effects of strong correlations. An important example is the emergent unconventional superconductivity in heavy fermion systems when tuned by some control parameter to a quantum critical point. This project combines my expertise with the expertise, facilities and instrumentation of the host group. I will investigate two important unconventional superconductors in this regime, YbRh2Si2 and Bismuth, using high quality single crystal samples. YbRh2Si2 is a prototype quantum critical, heavy fermion metal with a field-tuned quantum critical point. Magnetic measurements on high quality single crystal samples at the lowest fields find evidence for superconductivity. I will address the nature of this superconductivity, the role of quantum criticality, the interplay of electro-nuclear magnetism, and the use of strain as a tuning parameter in this system. This will be done through electrical and thermal transport measurements, investigating their crystalline anisotropy, as well as heat capacity studies. In each case I will exploit new methods tailored for this temperature regime. This work will be coupled with studies of the Meissner effect and anisotropy of the critical field. The recent discovery of superconductivity in Bismuth, a system with very low carrier density, below 0.53 mK has provoked significant theoretical interest in the pairing mechanism. The first transport measurements will be performed on this system. The project will advance the understanding of unconventional superconductivity, and contribute to the strategy to study quantum materials into the microkelvin regime.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
EGHAM HILL UNIVERSITY OF LONDON
TW20 0EX EGHAM
United Kingdom

See on map

Region
South East (England) Surrey, East and West Sussex West Surrey
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0