Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Topological order beyond the equilibrium ground state: driven quantum matter and magnon excitation spectra

Description du projet

Sur la piste d’un tableau périodique moderne des «éléments» topologiques

Les matériaux topologiques présentent des phénomènes physiques exotiques qui pourraient trouver d’importantes applications dans les dispositifs quantiques et la technologie de l’information quantique. Le prix Nobel de physique 2016 a été décerné pour des découvertes théoriques liées aux phases topologiques de la matière, qui figurent parmi les réalisations les plus importantes de la physique de la matière condensée. Tout comme le tableau périodique de Mendeleïev prédisait l’existence d’autres éléments et leurs propriétés en fonction de «règles» sous-jacentes, les scientifiques élaborent un tableau de Mendeleïev moderne pour les matériaux topologiques. Le projet ExcitingTopology, financé par l’UE, entend découvrir les concepts de classification intégrative sous-jacents qui nous guideront dans l’élaboration de nouveaux états de la matière topologique, ouvrant ainsi la voie à une nouvelle ère d’applications quantiques.

Objectif

With the discovery of topological order, condensed matter physics has witnessed a revolution in how phases of matter ought to be defined and characterized. Unlike spins aligning in a magnet, topological phases are not classified by symmetry breaking but instead require nonlocal invariants that relate to the mathematical domain of topology. This theme took a turn with the finding that even common electronic band structures can feature topological invariants in the presence of appropriate symmetries. Ever since, many such symmetry protected topological (SPT) states have been predicted and arranged into a unifying table. These developments have been accompanied by the actual realization of various topological band insulators that feature striking properties including protected metallic edge states and proposed exotic fractionalized excitations, which may provide a route to fault-tolerant topological quantum computing. Now, the field is approaching a new exciting turning point as indications are emerging that other parts of the modern 'Mendeleev table' exist involving band structures that do not pertain to equilibrium ground states. On the verge of this milestone, this project will take a pioneering role and investigate such SPT phases in the context of periodically driven quantum systems and magnon excitation spectra. The objective is to uncover the underlying general classification principles, which will provide a guide to engineering novel states and accordingly new physics. To this end, we will apply a multidisciplinary approach combining state-of-the-art handles on SPT order, insights from analytically tractable models and numerics. In particular, we envision that naturally present crystal symmetries will play a prominent role here -one that has yet to be appreciated- much as they do in equilibrium SPTs. Together with a complementary generalization of physical observables, we expect this action to pave the way to a new chapter in the success story of SPT phases.

Coordinateur

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 212 933,76
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 212 933,76