Project description
New models help scientists 'mining' for functionalised nanoparticle candidates
Gold nanoparticles have excellent biocompatibility and low toxicity and can be produced with a large spectrum of sizes and surface properties. Coating them with various surface monolayers imparts unique functionality for applications, from drug delivery and sensing to catalysis. The EU-funded CompNanozymes project will expand this repertoire with novel ‘nanozymes’ mimicking nature’s metalloenzymes that have a metal cation as a co-factor in the enzyme active site. These molecules process nucleic acids, and artificial ones could have an important impact on numerous medical and biotechnological applications. CompNanozymes will conduct an extensive modelling and experimental study of the mechanisms of nanozymes to advance our understanding of structure-function relationships to harness this amazing potential.
Objective
The functionalization of monolayer-protected gold nanoparticles is at the frontier of nanotechnology, with innovative applications emerging in fields such as nanomedicine, chemosensing, and catalysis. Here, we focus on nanomaterial-based artificial enzymes called nanozymes, which have been shown to be highly stable and low-cost alternatives to natural enzymes in a wide range of applications. For example, the self-organization of Zn complexes on the surface of gold nanozymes has been shown to generate multiple bimetallic catalytic sites capable of promoting the cleavage of an RNA model substrate. This two-metal-aided mechanism found in nanozymes closely resembles that used by many metalloenzymes that process nucleic acids in cells. However, the complex, hybrid, and flexible nature of the outer coating monolayer of nanozymes has so far made it difficult to investigate the structure and dynamics of these multifunctional chemical systems, which have reached a level of complexity resembling that of proteins.
Within this context, this project’s ambition is to use classical and hybrid QM/MM simulations coupled to free-energy computation, integrated with experiments, to study the metallo-dependent functionality and mechanisms of nanozymes that cleave nucleic acid model substrates. Through CompNanozymes, the fellow will thus acquire additional expertise in computational simulations, completing his research skill set and allowing him to grow into an independent group leader. Success will also fill the large knowledge gap in our understanding of nanoparticle structure-function relationships in nanozymes, advancing the field of computational nanodesign and directly impacting nanochemistry as a whole.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules nucleic acids
- medical and health sciences medical biotechnology nanomedicine
- natural sciences chemical sciences catalysis
- natural sciences biological sciences genetics RNA
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
16163 GENOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.