Periodic Reporting for period 1 - RadiPhyte (Advancing beyond the adaptive radiation paradigm: uncovering the contributions of adaptive and non-adaptive processes to a rapid plant radiation)
Reporting period: 2019-09-01 to 2021-08-31
We chose to work on the Dianthus of Eurasia because they are truly the “cichlids of the plant world”. The genus Dianthus comprises >330 species distributed throughout temperate Eurasia and Africa, with the bulk of its diversity (≥245 species) occurring in continental Eurasia. Dianthus displays a striking morphological diversity, indicating that ecological adaptation has probably contributed to its radiation. The rapid radiation of Dianthus further appears to coincide with increased aridity and seasonality in the Mediterranean and Irano-Turanian bioregions. The two bioregions where most Dianthus species occur, the Mediterranean and Irano-Turanian regions, are among the globe’s most topographically complex areas. They are home to >20% of the world’s plant species and represent hotspots of evolutionary and biological diversity of the Old World.
The main objective of RadiPhyte was therefore to investigate the radiation patterns of the genus Dianthus through two simultaneous cutting-edge approaches: (1) modern high-throughput capture sequencing to generate a robust, fully resolved phylogeny of the genus and (2) phenotyping methods to acquire a vast 3D quantitative shape dataset of the flowers of the genus.
We employed customized Target Capture Sequencing (TCS), which allowed us to successfully sequence herbarium material of Dianthus. In total DNA for 285 taxa was successfully extracted, of which 277 Dianthus specimens. In order to gather 3D flower datasets from compressed herbarium specimens, we successfully developed a new protocol to restore their shape. Flowers of >120 species of Dianthus were imaged and digitized; this unique phenotypic dataset is ready to be integrated together with our phylogenomic tree to elucidate radiation patterns in Dianthus. Moreover, our novel flower phenotypic methods allowed us to address previously unanswered questions about the phenotypic variation and evolution of flowers. In addition to sampling at the genus level, we also sampled at the individual and population levels. Our sampling allowed us to elucidate patterns of shape variation (i.e. modularity) across levels and uncover new relationships between these levels. Thanks to our extensive sampling of the genomic and phenotypic diversity of Dianthus across Eurasia, the results of our analyses on the radiation patterns of the genus appear robust and promising.
The overall goal of the dissemination activities of RadiPhyte was and is a wide-reaching impact, uptake and use of the project deliverables among target audiences: scientists, institutions, and the general public. The dissemination activities focused and currently still focus on three channels: project publications, event attendance, and online activities. Most of our dissemination activities were interrupted by the Covid-19 pandemic and postponed to 2022. The outcomes of RadiPhyte will produce at least four scientific papers of interest to the scientific community; our results are currently under review in high-impact specialist evolutionary ecology journal, and further three papers are in preparation.