Project description
Tracing the source of intergalactic magnetic fields
Magnetic fields that persist throughout Space and spread far beyond the galaxies that created them represent a significant recent finding in cosmology. Their morphology is imprinted on the cascade of sub-atomic particles generated by gamma rays interacting with background radiation fields. The EU-funded GammaRayCascades project will combine observation data from air Cherenkov telescopes and the Fermi Large Area Telescope with precise model predictions of the cascade. Their aim is to detect the cascade signal and the intergalactic magnetic field. Measuring intergalactic magnetic fields will provide crucial information about how large-scale structures form, how the Universe evolves, and how charged cosmic rays and electromagnetic waves propagate through intergalactic space.
Objective
The existence of an intergalactic magnetic field (IGMF) remains elusive and only upper limits on its strength are known from limits on the rotation of polarization angles of radio waves. Its measurement would provide crucial information about large scale structure formation, since the IGMF is thought to act as a seed field for magnetic fields in galaxies and galaxy clusters, how the Universe evolved, and how charged cosmic rays and electromagnetic waves propagate through intergalactic space.
Here, I propose a new search for IGMF signatures using observations of a high-energy gamma-ray cascades from distant galaxies. Gamma rays interact with background radiation fields to produce electron-positron pairs. These pairs up-scatter cosmic-microwave photons to gamma-ray energies, initiating the cascade. The IGMF morphology is imprinted on the cascade through a deflection of the pairs in the IGMF. A novel combination of observations with imaging air Cherenkov telescopes and the Fermi Large Area Telescope, using both spectral and spatial information, combined with precise model predictions of the cascade, promise an unprecedented sensitivity for detection of the cascade signal and the IGMF. Strong constraints on the IGMF strength will be possible if no cascade is detected.
Furthermore, I will also search for a gamma-ray and neutrino signal from cascades initiated by cosmic rays from active galaxies. This will yield an independent probe of the IGMF and, additionally, constraints on the cosmic-ray acceleration power of such galaxies. As part of this work, I will also make predictions how the future Cherenkov Telescope Array (CTA) can further improve the detection of or constraints on the IGMF and the cosmic-ray acceleration power of active galaxies. This will result in an optimized observation strategy for the extragalactic survey and the blazar monitoring program, which are both planned with CTA.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics neutrinos
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91058 ERLANGEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.