Project description
Commercialisation of efficient single-photon detectors for telecom applications imminent
Sending and receiving quantum information over long distances using single photons at telecommunication wavelengths will underpin innovations in remote sensing applications and quantum information processing. The EU-funded NP-SPAD project will develop a device scheme that leverages single-photon avalanche diodes (SPADs) composed of semiconductor materials that will be operating at 1.55 µm. The aim is to improve photon detection efficiency by 20 % and significantly reduce the dark count rate compared to the commercial Geiger-mode avalanche photodiodes. If successful, the project will significantly foster the development and commercialisation of high-performance semiconductor-based SPADs, putting the EU at the forefront of cutting-edge technology in single-photon detection.
Objective
High efficiency detection of single photons at telecommunication wavelengths (notably at 1.55 µm) is critical for emerging technologies, such as free-space and on-fiber quantum information processing, eye-safe and long-distance light detection and ranging (LiDAR), and highly sensitive remote sensing. This research project aims to meet this critical need by developing III-V nanopillar-based uncooled single-photon avalanche diodes (NP-SPADs), which are composed of nanostructured InAsP-InP Geiger-mode avalanche photodiodes (GmAPDs) with self-assembled plasmonic gratings, operating at 1.55 µm. Compared with commercially available InGaAs(P)-InP GmAPDs, the proposed device scheme significantly suppresses thermally generated carriers and trap state population by a factor of 20 to 100 due to the extremely small fill factor of nanopillar arrays (less than 5%). All the while, sufficient optical absorption is maintained via surface plasmon resonance by the plasmonic gratings. The sum combination of these unique capabilities offers the promise of achieving NP-SPADs with free-running mode operation, high photon detection efficiency (PDE; probability of detecting a single photon) of 10 – 20%, low dark count rate (DCR; rate of false detection) of ~50 Hz, and high photon count rate ≥5 MHz. If successful, this approach can drastically stimulate the development and commercialization of high performance semiconductor-based NP-SPADs, putting European Union (EU) at the forefront of cutting-edge technology in single photon detection.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- engineering and technology environmental engineering remote sensing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CF10 3AT CARDIFF
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.