Objective
In the past few years, a new topological phase of matter, the Weyl semimetals, has been discovered. In Weyl semimetals, the bulk band structure is characterized by pairs of Weyls cones with opposite chirality that are separated in momentum space, resembling graphene. Its non-trivial electronic structure leads to quantum anomalies and unique transport properties including an extremely high mobility, which offers not only a platform for testing relativistic theories but also a great potential for device applications. The combination of bulk-transport and topological protection currently inspires many researchers to seek novel applications of Weyl semimetals in the emerging areas of neuromorphic computing, quantum computing or reversible computing. However, the great promise of Weyl semimetals, or topological material in general, is yet to be unleashed through meaningful demonstrations of their potential in device applications.
In this action, we will develop electrically-gated devices to actively control the transport properties of Weyl semimetals at IBM Research - Zurich. More precisely, we will build and test a Weyl semimetal valley filter based on a recent theoretical proposal. To do this, we will first perform extensive material characterizations and magneto-transport measurements on the candidate Weyl semimetal materials to verify sample quality and its influence on the transport properties. Afterward, we will develop the processing steps to fabricate Weyl semimetal field-effect devices with high gate control and allow incorporation of additional contact structures for valley polarization sensing. Being able to actively control the transport properties of Weyl semimetals is not only a crucial step for its application in information technology but also for probing new physics of Weyl fermions. To achieve the objectives, a secondment is planned at Max Planck-Institute for the Chemical Physics of Solids for knowledge transfer and complimentary experiments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics fermions
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8803 RUESCHLIKON
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.