Skip to main content

Interfacing interacting Rydberg polaritons: From few- to many-body interactions


Rydberg quantum optics (RQO) is a very promising approach to achieve effective interactions at the level of individual photons. It maps the strong interactions between ultracold Rydberg atoms onto light fields to create strongly interacting Rydberg polaritons. RQO enables single photon generation, exotic photon bound states, and effective interactions between spatially separated photons. Based on RQO, various quantum optical devices can be implemented, e.g. a deterministic gate for optical quantum information processing. Experiments to date have mostly used 1D interaction geometries and not yet investigated interactions between more than 2 or 3 polaritons or in a quantum network of interaction nodes. InterPol will implement controlled interactions between multiple Rydberg polaritons based on two complementary approaches. One will cascade multiple devices such as single-photon transistors and subtractors to implement multi-polariton logic circuits and demonstrate a network that coherently interfaces entangled Rydberg excitations with photons for quantum state transfer. The second will use adaptive optics to realize a novel, highly flexible platform to study simultaneous interactions between multiple polaritons in arbitrary spatial geometries to study the transition regime from few- to many-body interactions. This has fundamental impact beyond quantum optics as it will allow highly controlled experimental tests of many-body interactions and non-perturbative effects in quantum field theories with quasi-particles in a tabletop setting. Collaborating with leading theorists to experimentally benchmark field-theoretical descriptions, the applicant will further deepen his theoretical understanding of RQO to complement his excellent experimental skills. In charge of a comprehensive research action, he will enhance his independence and possess the skill set required to develop and conduct innovative quantum optics experiments as an independent researcher at its end.

Field of science

  • /natural sciences/physical sciences/optics
  • /natural sciences/physical sciences/quantum physics/quantum field theory
  • /natural sciences/physical sciences/quantum physics/quantum optics
  • /natural sciences/mathematics/pure mathematics/geometry
  • /natural sciences/physical sciences/theoretical physics/particles/photons
  • /natural sciences/computer and information sciences/data science/data processing

Call for proposal

See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF


Campusvej 55
5230 Odense M
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 207 312