Project description
Studying animal venom and its evolutionary implications
Venomous animals are mysterious. While animal venom poses a fascinating example of concurrent evolutionary traits in the animal kingdom, scientists are still trying to figure it out. As a trait present among prey, predators, animals and plants, it stems from unique specialised anatomical structures. But little is known about the evolution of the venom-producing organs. The EU-funded EVER project will use omics technologies to answer questions concerning the extent of convergence in venom gland transcriptomes, their genetic basis and the molecular mechanisms underlying the evolution and specialisation of venom-producing systems. The findings will shed light on the convergent evolution of animal novel traits.
Objective
Animal venom is a remarkable example of convergent evolutionary novelty - it has independently evolved across all phyla of the animal kingdom to subdue prey and predators. To produce and deliver this potent biochemical weapon, venomous animals possess specialized anatomical structures which emerge from different developmental tissues in the various lineages. How animals have repeatedly evolved this key adaptive trait is unknown. The recent omics revolution has generated an explosion of venom-gland transcriptomes mainly for biodiscovery. However, the mechanisms underlying the emergence and regulatory evolution of venom have not been investigated. In this ambitious and ground-breaking project, I will use a hierarchical approach and large-scale comparative transcriptomic analyses to shed light on the following open questions: Q1) To what extent is the independent evolution of novel adaptive traits associated with convergence in transcriptome evolution? Q2) Which molecular processes contribute to the evolution of these innovative traits? Q3) To what extent does the expression pattern of new specialized cell types overlap the original tissue from which they develop? I will answer Q1 by comparing non-homologous venom-gland transcriptomes across the major lineages of the animal kingdom. I will answer Q2 by focusing on one lineage (Neogastropoda) and comparing the venom-gland with homologous, non-venomous organs. Finally, I will answer Q3 by analysing gene expression patterns between structurally and functionally different cell types within the venom-gland. The success of this project is ensured by the integration in top hosting bioinformatics groups at the Université de Lausanne and collaboration with leading experts in cone snail evolution. This project will provide intensive training which is crucial for restarting my research career and establishing myself as a pioneer and leader in a new research area, venom evo-devo.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry
- agricultural sciences veterinary sciences
- natural sciences biological sciences zoology
- natural sciences biological sciences molecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.