Project description DEENESFRITPL New approach for testing quantum supremacy To test the ability of quantum computing devices to solve problems that classical computers practically cannot, researchers have looked into the idea of Gaussian boson sampling. This works by creating an environment where photons are introduced into a device and allowed to interact with each other for a given period of time. Prior research suggested that this is an intractable problem for todays’ computers as simulating photon location distribution over multiple samples would take a very long time. The EU-funded FrEQuMP project will conduct boson sampling by considering the frequency information encoded in photonic quantum states. They can then generate the desired coherent quantum state and demonstrate boson sampling with many photons, avoiding problems arising from photons leaking from the system. Show the project objective Hide the project objective Objective Optical quantum computing and quantum simulation rely on multi-photon interference effects, between many photons in a larger number of optical paths or modes. In particular in Gaussian Boson Sampling protocols, single-mode squeezed states are input to an optical circuit implementing a transformation on the modes, which creates a complex multi-mode squeezed state. Sampling from such a state with single photon detectors is thought to be an intractable problem to simulate with classical computers, and has useful applications, for instance in calculating molecular vibronic spectra and in identifying densely connected sub-graphs of a network. This motivates building quantum-optical devices to implement Gaussian Boson Sampling. However, it is resource intensive to create a usefully large state using many separate squeezed sources and a circuit, and very technically challenging to avoid photon loss and to maintain interferometric stability. Here, I propose to carry out Gaussian Boson Sampling and related experiments by directly generating multi-mode squeezed states encoded in frequency, from a single source with reconfigurable frequency correlations. Using frequency channels to represent the modes is very compact because they can all propagate along the same spatial path, and this also ensures interferometric stability. Directly generating the desired state will avoid having the photons propagate through a lossy circuit, allowing scaling to higher photon numbers, and frequency encoding will make large numbers of modes readily available, surpassing the state-of-the-art in spatially-encoded circuits. Fields of science engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computersnatural sciencesphysical sciencestheoretical physicsparticle physicsphotons Keywords FrEQuMP Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2018 - Individual Fellowships Call for proposal H2020-MSCA-IF-2018 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE Net EU contribution € 212 933,76 Address South kensington campus exhibition road SW7 2AZ London United Kingdom See on map Region London Inner London — West Westminster Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00