Project description
MRI-based 3D body biochemistry scanning
Until recently, there were no imaging technologies capable of detecting metabolic disturbances in humans in a non-invasive manner. Deuterium metabolic imaging (DMI) has come to revolutionise metabolic monitoring through the use of the non-radioactive and biocompatible deuterium (2H) isotope. The process entails the administration of a deuterium-labelled metabolic substrate such as glucose followed by magnetic resonance spectroscopic imaging. The key objective of the EU-funded BodyDMI project is to generate a DMI setup that could be established in the clinic for measuring patient metabolism. Moreover, researchers will test the feasibility of DMI in diabetes patients, while its application could extend to monitoring cancer treatment.
Objective
The global obesity epidemic has resulted in a dramatic rise in metabolic diseases and the development of effective therapies has greatly lagged behind. This could arguably be attributed to a lack of non-invasive (imaging) techniques to characterize disturbances in metabolic pathways. We will investigate the use of dynamic deuterium metabolic imaging (DMI) to dynamically map body biochemistry in humans in 3D imaging mode. DMI relies on deuterium magnetic resonance spectroscopic imaging combined with oral administration of deuterium-labeled compounds.
The innovation idea is linked to the MCUBE project of FET-OPEN-01-2016-2017. Here a dual-dipole coil was designed for hydrogen MRI at 7 tesla (300 MHz), which outperformed the state-of-the-art setup of the loop-dipole coil for MRI. The new design is transparent to loop designs, meaning that the setup can be combined with loop coils, which are known to be the optimal setup for low frequency operation. So for DMI, which operates at 45.7 MHz (low frequency) at 7 tesla, an MRI coil array can be designed that not only outperforms MRI, but also enables DMI at uncompromised sensitivity within the same scan session, which will complement the utilization of the MCUBE project.
The objectives of the project are: (1) Build and test a body DMI setup for a clinical ultra-high field 7 tesla MRI scanner; (2) demonstrate proof of concept to measure hepatic carbohydrate and lipid metabolism with DMI; and (3) apply DMI in a clinical feasibility study in type 2 diabetes patients. Upon successful completion of the project, DMI will be valorized by the commercial partners and embedded in clinical practice, which opens up a new window for drug studies to directly image their chemical efficacy. Besides its application in metabolic diseases, DMI has potential to detect organ failure, drug toxicity and effects of cancer treatment in a much earlier stage than morphological imaging.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
CSA - Coordination and support action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CX Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.