Skip to main content
European Commission logo print header

Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction

Project description

How to best operate geothermal systems for sustainable use

The efficiency of geothermal utilisation depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The EU-funded REFLECT project aims to avoid problems related to fluid chemistry rather than treat them. The physical and chemical fluid properties are often poorly defined, as in situ sampling and measurements at extreme conditions are difficult to date. Therefore, large uncertainties in current model predictions prevail, which will be tackled in REFLECT by collecting new, high-quality data in critical areas. These data will be implemented in a European geothermal fluid atlas and in predictive models allowing to provide recommendations on how to best operate geothermal systems for sustainable use.

Objective

The efficiency of geothermal utilisation depends heavily upon the behaviour of the fluids that transfer heat between the geosphere and the engineered components of a power plant. Chemical or physical processes such as precipitation, corrosion, or degassing occur as pressure and temperature change with serious consequences for power plant operations and project economics. Currently, there are no standard solutions for operators to deal with these challenges.
The aim of REFLECT is to avoid the problems related to fluid chemistry rather than treat them. This requires accurate predictions and thus a thorough knowledge of the physical and chemical properties of the fluids throughout the geothermal loop. These properties are often only poorly defined, as in situ sampling as well as measurements at extreme conditions are hardly possible to date. As a consequence, large uncertainties in current model predictions prevail, which will be tackled in REFLECT by collecting new, high quality data in critical areas.
The proposed approach includes advanced fluid sampling techniques, the measurement of fluid properties at in situ conditions, and the exact determination of key parameters controlling precipitation and corrosion processes. The sampled fluids and measured fluid properties cover a large range of salinity and temperature, including those from enhanced and super-hot geothermal systems. The data obtained will be implemented in a European geothermal fluid atlas and in predictive models that both ultimately allow to adjust operational conditions and power plant layout to prevent unwanted reactions before they occur. That way, recommendations can be derived on how to best operate geothermal systems for sustainable and reliable electricity generation, advancing from an experience-based to a knowledge-based approach.

Call for proposal

H2020-LC-SC3-2018-2019-2020

See other projects for this call

Sub call

H2020-LC-SC3-2019-RES-TwoStages

Coordinator

HELMHOLTZ ZENTRUM POTSDAM DEUTSCHES GEOFORSCHUNGSZENTRUM GFZ
Net EU contribution
€ 1 008 975,00
Address
TELEGRAFENBERG
14473 POTSDAM
Germany

See on map

Region
Brandenburg Brandenburg Potsdam
Activity type
Research Organisations
Links
Total cost
€ 1 008 975,00

Participants (27)