Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Precipitation triggered rock dynamics: the missing mesoscopic link

Project description

Countering salt damage by controlling rock dynamics through mesoscopic analysis

Cyclic changes during rock weathering or at geothermal or CO2-sequestration sites lead to precipitation-dissolution cycles of salts, natural constituents of brines inside rocks, which might degrade rocks’ structure. What triggers rock dynamics up to fracturing during salt precipitation? Can we ultimately control this trigger? The EU-funded PRD-Trigger project advocates that the answer lies at the mesoscale, the scale of the pore network. It will combine 4D X-ray imaging with a mesoscopic numerical simulator integrated into the image analysis workflow to identify key factors in precipitation-induced damage. Damage control and crack healing will then be demonstrated on core-scale rocks. These advanced methods could be used to increase durability of building stones, to protect historic monuments, or to optimize geoengineering techniques.

Objective

Climate change leads to increasing weathering cycles on landscapes and the built environment. Promotion of alternative energy sources such as geothermal energy intensifies cyclic perturbations of the underground environment. Both lead to precipitation-dissolution cycles of salts, natural constituents of brines present inside porous rock. When precipitation occurs inside the pores, stresses build up which eventually crack the material. This might be a positive outcome, e.g. increasing the production rate of a geothermal reservoir, or on the contrary, be the cause of severe deterioration of natural building stones and coastal erosion.

What is the actual trigger for the dynamic response of a rock when precipitation occurs, and can we ultimately control this trigger? The answer lies at the meso-scale, i.e. the scale of the pore network, where precipitation-dissolution reactions, geometry changes and flow and transport properties changes meet. These reactions and changes are strongly coupled, but their respective importance for the resulting rock dynamics is unclear. A combined experimental-modelling approach will be developed, comprising: (1) 4D X-ray micro-tomographic experiments providing new insights in the correlations between transport-precipitation-deformation processes inside rock; (2) a virtual simulator for precipitation-triggered rock dynamics based on a unified phase-field description; (3) a model-based image analysis approach, combining the simulator and the experimental dataset through a Bayesian framework for properties and constitutive model identification and hierarchization. This hierarchization will pinpoint the governing trigger(s).

By acting on the trigger, controlled precipitation-induced cracking and crack healing will be demonstrated on core-scale rocks. The new experimental-modelling toolset will open new ways for improving building stones’ durability, cultural heritage and coastal protection, and geoengineering of the subsurface.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 491 330,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 491 330,00

Beneficiaries (1)

My booklet 0 0