Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

From spatial relationships to temporal correlations: New vistas on predictive coding

Project description

New theory on the role of gamma waves in information transmission

When we are awake, brain cortical activity organises itself into gamma-wave patterns. However, scientists disagree on the exact role of gamma waves in transmitting information. Concerning predictive coding theories, the general belief is that gamma waves carry prediction errors. A recent hypothesis claims the opposite: firstly, that gamma waves signal a match between predictions and sensory inputs and, secondly, that columns that predict each other’s visual input engage in long-range gamma-synchronisation. To test this hypothesis, the EU-funded SPATEMP project aims to develop a new method to quantify predictions and prediction errors in the context of natural vision. To do this, it will use recently developed deep-learning networks. The project will advance a new unified theory on the role of gamma waves in information transmission.

Objective

During active wakefulness, cortical activity organizes itself into highly coherent patterns of gamma waves (30-80Hz). These waves are believed to be essential for cortical communication and synaptic plasticity. Their impairment is a hallmark of neurological and psychiatric disorders. Yet, it remains heavily debated what gamma waves encode, and what their precise role in information transmission is. I have recently proposed a new theory about gamma in visual cortex, building on the predictive coding theory. The predictive coding theory holds that the brain makes active top-down predictions about its own sensory inputs. By comparing these, it generates bottom-up prediction errors to drive learning and the updating of priors. The standard view in predictive coding theories is that gamma waves carry prediction errors. However, I recently hypothesized the opposite: 1) Gamma waves signal a match between predictions and sensory inputs (i.e. predictability), and 2) Columns that predict each other's visual input engage in long-range gamma-synchronization. To test this hypothesis, it is critical to develop a new method to quantify predictions and prediction errors in the context of natural vision. I will solve this by using recently developed deep-learning networks for prediction. By making multi-areal recordings from visual cortex in marmosets and humans (MEG), I will test if predictability indeed determines gamma waves and their synchronization pattern across space. Because stimulus priors have to be acquired through learning, I will further determine whether gamma waves depend on experience and perceptual learning. In marmosets, I will develop an optogenetics approach to test whether gamma waves drive perceptual learning, and test the prediction that V1 gamma waves depend on top-down feedback. In sum, I expect to provide evidence for a new, unified theory about the role of gamma waves in information transmission and the integration of sensory evidence with predictions.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-STG

See all projects funded under this call

Host institution

ERNST STRUNGMANN INSTITUTE GGMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 750 000,00
Address
DEUTSCHORDENSTRASSE 46
60528 Frankfurt Am Main
Germany

See on map

Region
Hessen Darmstadt Frankfurt am Main, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 750 000,00

Beneficiaries (1)

My booklet 0 0