Project description
Better control over tiny, powerful jets of fluids will streamline needle-free injection
The development of enhanced needle-free methods to inject liquids into soft substrates could have a significant impact on fields ranging from additive manufacturing to drug delivery. These methods rely on injecting a microfluid jet under high pressure guided by the equivalent of a capillary tube with a very small diameter opening. While it seems simple enough in principle, in practice it has been challenging to achieve. The EU-funded BuBble Gun project plans to enable clean penetration to just the right depth without splash-back or dispersion, which can cause contamination and alter the dose unpredictably. Relying on a combination of experimental and numerical methods, the team is characterising the stages of the process to enhance control, reproducibility and widespread application.
Objective
The needle-free delivery of liquid jets into soft and heterogeneous substrates, e.g. human tissue, has been hindered by (1) the need to reach specific penetration depths with energy efficient means, (2) the break-up of jets that impedes control over the dose delivery, and (3) liquid splash-back after impacting the substrate that cause cross-contamination between injections. BuBble Gun is aimed at overcoming these challenges. My team and I have recently uncovered new operational regimes of cavitation with continuous-wave lasers. My next goal is to study the energy partition between the creation of bubbles, the formation of liquid jets, and the penetration of these jets into soft substrates. Fundamental insights on energy partitioning will then be applied to achieve major breakthroughs in jet injection, by (1) controlling cavitation within microfluidic confinement, (2) tuning the rheology of jets emerging from confined cavitation, and (3) deriving the relationships between fluid dynamics and material properties governing jet injection into soft substrates. I expect to advance the knowledge at the intersection of microfluidics, physics, and bioengineering, to enable unprecedented control over cavitation, jetting, and injection phenomena. We will develop a portable energy- efficient injection platform by using ultra-high-speed imaging, and quantifying injections with experimental resolutions below the microsecond and micrometer scales. The rheological properties of the jets will be tuned with biocompatible additives to ensure cohesion, before injecting them into in-vitro targets and ex-vivo skin. Numerical models will assist untangling the influence of microfluidic configuration and material properties on the injection outcomes. The ultimate result will be the predictable, reproducible, and efficient injection of liquids that will enable a wide-range of technologies, such as additive manufacturing, coating modifications, the delivery of drugs and vaccinations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- engineering and technology materials engineering coating and films
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
- microfluidics
- bubble
- cavitation
- rheology
- jet
- needle-free transdermal delivery
- drop impact
- splashing
- Reynolds number
- Weber number
- Ohnesorge number
- viscoelasticity
- biodegradable polymers
- skin surrogates
- ex-vivo skin
- vaccinations
- jet break-up
- jet splash-back
- permanent make-up
- medical tattooing
- continous wave lasers
- thermocavitation
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7522 NB Enschede
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.