Project description
Research reveals new possibilities for light-matter interaction in 2D materials
Most light-matter interaction processes are forbidden by electronic selection rules that limit the number and type of transitions between energy levels. Recent research has demonstrated theoretically that these constraints can be lifted using confined plasmons or phonon-polaritons within 2D materials. The EU-funded NanoEP project will go beyond recent work to study conventionally forbidden light-matter interactions of free electrons that have never been explored before. The NanoEP researchers aspire to observe double spontaneous emissions of a polariton paired with a high-energy photon. The team will attempt to realise ultra-strong electron-polariton coupling in new 2D materials, pushing the classical and quantum boundaries of electron-photon energy conversion that limit the efficiency of a wide range of processes.
Objective
Light-matter interactions are highly limited by strict fundamental rules. The commonly used dipole approximation enforces selection rules that prohibit many electronic transitions due to the mismatch between the wavelength of light and the scale of its emitter (e.g. atom, molecule, quantum dot). This mismatch even prevents access to many other light-matter interactions such as spin-flip transitions and multiphoton spontaneous emission.
In the past four years, I have shown theoretically and experimentally how extreme confinement of light enables transitions that are otherwise forbidden. For example, transforming an unobservable multiphoton emission to be the dominant transition. The key to accessing such transitions is using nano-confined 2D plasmons or phonon-polaritons.
I propose to go beyond my recent work and to study conventionally-forbidden light-matter interactions of free electrons, which have never been explored before. I will do this by utilizing polaritons in nanophotonic structures and in settings of 2D materials. Using both theory and experiments with an ultrafast transmission electron microscope (UEM), my group will develop and observe novel concepts of light emission such as double spontaneous emission of a polariton paired with a high energy photon. We will attempt to realize ultrastrong electron-polariton coupling in new systems, pushing the classical and quantum boundaries of electron-photon energy conversion that limit the efficiency of a wide range of processes.
This project will challenge limits in electron-polariton interactions to enable novel polariton phenomena in nanostructures and settings of 2D materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.