Project description
The smaller the better for particle detection
Potentiometric sensors utilising membrane materials in ion-selective electrodes are now routinely part of clinical laboratory testing procedures and increasingly employed in environmental analysis. Detection systems rely on sensitivity and selectivity for ion detection in such applications, as particle sizes are small and relevant concentrations can be quite low. ConquerIons is developing pioneering ion sensors using nanomembranes to significantly enhance performance. Nanomaterials have unique physical and chemical properties that emerge from their tiny scales, and make them particularly well-suited to sensing. Among these are very high surface-to-volume ratios (lots of sensing surface in a small space), good conductivity, and high mechanical strength. ConquerIons is exploiting nanomembranes to develop next-generation high-performance nanosensors for a variety of applications.
Objective
ConquerIons is seeking a definitive solution for the detection of ions in real scenarios by innovatively addressing the limitations of traditional ion-sensing concepts in terms of effectiveness, sensitiveness, robustness and downscaled platforms. The project proposes a new generation of voltammetric, amperometric and optical ion sensors based on calibration-free selective membranes inspired by conventional membranes used in the well-established potentiometry field but with a thickness at the nanoscale. The uniqueness of the dynamic electrochemical tuning of ion-transfer processes across these nano-membranes opens up a revolutionary approach that allows for the monitoring of ion concentration in a sample with unprecedented analytical performance. Thus, the project combines efforts from the synthetic chemistry, material science, nanoscience, electrochemistry and analytical chemistry disciplines resulting in a universal concept for the reliable detection of ions. ConquerIons is based on a research approach carefully designed mainly considering the following challenges: (i) the use of novel materials to afford a robust and universal detection; (ii) the implementation of thin-layer concepts of electrochemical and/or optical-sensing platforms to achieve reduced limits of detection and calibration-free methodology; (iii) the translation of the developed concepts to the single-entity scale (i.e. single nanoparticles) towards the study of ion-transfer processes employing, for the first time, ‘nanocoulometry’ readout; and (iv) exploitation of sensors from the laboratory context based on relevant cases as the next step towards the final use as daily smart informers operating in real scenarios. This latter purpose will lead to a series of extraordinary analytical applications from a long-term perspective related to very distinct fields, such as cell-scale therapies and speciation of trace ion levels in environmental analysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30107 MURCIA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.