CORDIS - Résultats de la recherche de l’UE
CORDIS

Fundamental and Applied Science using Two Dimensional Angstrom-scale capillaries

Description du projet

La structure de la liaison hydrogène de l’eau étudiée sous un nouveau microscope

L’eau est le liquide le plus abondant sur Terre. Essentielle à la vie, elle fait partie de pratiquement tous les processus chimiques, géologiques et biologiques. La structure et la dynamique du réseau de liaisons hydrogène de l’eau restent encore à l’étude. Le projet AngstroCAP, financé par l’UE, développera de nouveaux dispositifs capillaires pour étudier la structure et la dynamique de l’eau. Ces dispositifs ont une configuration de type laboratoire sur puce, des canaux de l’ordre d’un angström et des parois atomiquement lisses. Le projet rassemblera des capillaires de quelques microns de long, en emprisonnant deux blocs de couches de cristaux, écartés par un séparateur 2D en cristal et atomiquement léger. À l’intérieur de ces canaux, les chercheurs représenteront la condensation de l’eau et en analyseront simultanément la structure par spectroscopie dans des conditions in situ (température, pression).

Objectif

I will construct and apply next generation capillary devices as an exciting experimental platform to enable ground-breaking investigation of structure and dynamics of water at the ultimate molecular scale. These devices are in a lab-on-a-chip type configuration with angstrom-scale channels and atomically smooth walls. I am making them by scrupulous assembly tools in a controllable and reproducible fashion and they are extremely stable. Myself and my team will assemble capillaries of a few microns in length, by sandwiching two blocks of layered crystals, e.g. mica, graphite, boron nitride, separated by an atomically thin 2D-crystal spacer. Inside these channels, we will image water condensation along with simultaneous structure analysis by spectroscopy, under in-situ (temperature, pressure) environments. Another key aim of the project is to produce 2D slit-like pores on a large scale by slicing the pre-made 2D capillaries using sharp diamond knives, and explore their applications in size selective separation and biomolecular translocation. This ambitious research program is only possible because of my extensive angstrom-scale fabrication expertise, coupled with world leading fabrication capabilities at the University of Manchester.
Objectives
1: To utilize angstrom-scale capillaries constructed out of two-dimensional (2D) materials as a versatile platform for studying confinement effect on structure and dynamics of water.
2: To construct new types of angstrom-scale 2D-pores from these capillaries for studying size-selective molecular separation, biomolecular sequencing and translocation.
The project will have a lasting impact in understanding what the angstrom-scale confinement offers in terms of active control of molecular transport. Such confinement effects are efficiently utilized in various natural systems (e.g. protein channels) and the results could even aid in designing elementary building blocks of stimuli responsive artificial fluidic circuitry

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

THE UNIVERSITY OF MANCHESTER
Contribution nette de l'UE
€ 1 619 466,00
Adresse
OXFORD ROAD
M13 9PL Manchester
Royaume-Uni

Voir sur la carte

Région
North West (England) Greater Manchester Manchester
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 619 466,00

Bénéficiaires (1)