Project description
New research on graphene towards room-temperature superconductors
Ever since the discovery of graphene, scientists have been fascinated with the strange, two-dimensional lattice of pure carbon and the new physics it holds. Recent groundbreaking studies showed that twisted bilayer graphene can exhibit alternating superconducting and insulating regions at room temperature. But how that happens remains a mystery: once it has been solved, the information could potentially help scientists engineer materials that conduct electricity with zero resistance near room temperature. The EU-funded SuperTwist project will help piece together the puzzle of graphene’s unconventional superconductivity by experimentally revealing its defining aspect, known as the superconducting order parameter. Since no single experimental method can define this complex quantity, the project will combine expertise from different disciplines including material science and metrology.
Objective
It is widely believed that the development of room temperature superconductivity is one of biggest challenges of modern physics and will lead to a technological revolution. However, a detailed understanding of how high temperature superconductivity arises in unconventional superconductors has to this day eluded scientists. This year, in a breakthrough discovery, scientists have found superconductivity in a radically new compound, which has a strikingly similar phenomenology to most unconventional superconductors – “magic” angle bilayer graphene. As graphene crystals are ultra-clean, highly tuneable and its parent state is well understood, I strongly believe that the study of these compounds will cause a long awaited revolution in the comprehension of unconventional superconductivity.
In this project I will uncover the nature of superconductivity in “magic” angle graphene, by experimentally revealing its defining aspect – the superconducting order parameter. While no experimental method alone can definitely define the order parameter and since key experimental techniques are unavailable for these truly nano-scale materials, I will implement a radically new, multidisciplinary approach between material science and the development of disruptive measurement techniques. To achieve this ambitious goal, my truly unique background is essential, which includes van der Waals engineering, quantum transport, microwave engineering and quantum optics. I will employ these versatile skills to (i) develop robust procedures to engineer novel van der Waals hetero-structures of “magic” angle graphene to manipulate its phonons, impurities and magnetic correlations, (ii) perform Josephson interferometry and tunnelling experiments to
investigate its macroscopic phase, spin state and excitation spectrum, (iii) develop novel thermal transport and specific heat techniques to investigate the size and nodal structure of its superconducting gap.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences atomic physics
- social sciences political sciences political transitions revolutions
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.