Project description
Study on planetary atmosphere evaporation sheds light on planet formation
Notwithstanding research progress, an understanding of processes leading to planet formation remains limited. Many exoplanets, that is, planets orbiting around stars other than the Sun, have volatile atmospheres. Close proximity to stars makes exoplanets’ upper atmospheres vulnerable to mass-loss through evaporation caused by heating. PEVAP project partners have recently played a pivotal role in establishing that evaporation of planetary atmospheres drives the evolution of the observed exoplanet population. This research development renders evaporation understanding crucial to deciphering exoplanet formation. The EU-funded PEVAP project goal is to create the world’s first comprehensive models of exoplanet evaporation. Providing answers to key questions around evaporation processes and effects, the PEVAP project team will help explain how exoplanets are born.
Objective
Modern astronomy has truly entered the exoplanet era. Although our knowledge of what planet formation produces has grown immensely thanks to observational advances, our actual understanding of the physical processes that give rise to planets and planetary systems is limited. We now know most stars are unlike our own Sun, in that they host planets which orbit around their star with periods of months or shorter, yet many have volatile rich atmospheres. These planets must result from a dominant (if not the dominant) mode of planet formation, yet they were completely missing from our planet formation theories a decade ago.
Planets which are close to their parent star are extremely vulnerable to mass-loss through evaporation, where UV/X-ray photons can heat their upper atmospheres to close to the escape temperature, causing them to lose-mass. Recently, I have played a leading role in showing that evaporation drives the evolution of the observed exoplanet population. Thus, the observed exoplanet population is not representative of the one at birth; to use it as a probe of planet formation we must understand evaporation. However, the evaporation of highly-irradiated planetary atmospheres is not well understood. This especially true for terrestrial planets where the atmospheres are dominated by heavy elements.
My team will use a combination of theory, simulations and observations to build the first global and comprehensive models of exoplanet evaporation. In doing this, my team will use evaporation as a window into planet formation by answering the following key questions:
1 What are the mass-loss rates and evaporative flow structures for the full spectrum of observed planets?
2 How can we use observations of evaporating planets to learn about their compositions and histories?
3 How does evaporation affect and control the evolution of planets and their atmospheres?
By understanding how exoplanets evaporate and evolve, my team will unveil the exoplanet population at birth.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- humanities history and archaeology history
- natural sciences physical sciences astronomy planetary sciences planets exoplanetology
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.