Project description
Angular control of 2D layer provides a path new path for valleytronics
In many 2D materials, electrons not only possess charge and spin, but further display an unusual quantum feature known as valley. While spintronics harnesses the electron spin to store, manipulate and read out information bits, the emerging field of valleytronics performs similar tasks using the multiple extrema of the band structure. The EU-funded TWISTRONICS project will investigate how to control and engineer these valley electronic states and phase transitions in graphene and boron nitride heterostructures by controlling a new degree of freedom, crystallographic alingment. The understanding of these states is highly relevant in the developing of future quantum technologies.
Objective
The relative angular alignment between the stacked 2D layers of a van der Waals (vdW) heterostructure can dramatically alter its fundamental properties. A striking example is the recent observation of strongly correlated states and intrinsic superconductivity in twisted bilayer graphene. Another remarkable effect of angular layer alignment predicted for certain vdW heterostructures is the emergence of phases of matter with non-trivial topological properties, where charge carriers flow without dissipation, being protected against perturbations. In graphene aligned with boron nitride (BN), such a phase has been predicted, with topological protection linked not to the spin, as commonly observed, but rather to the valley degree of freedom. However, due to the scarcity of experimental tools to demonstrate this topological protection, or tune the transition between topologically trivial and non-trivial phases, the few experimental observations available remain inconclusive.
The objective of TWISTRONICS is to contribute, with fundamental concepts, to future advancements of valleytronics, where the control over the valley degree of freedom is used for technological developments including quantum technologies. To reach this goal I propose a novel approach using dynamically rotatable heterostructures, combined with Berry curvature and real-space supercurrents distribution measurements, to tune and investigate the topological phases driven by crystal alignment on graphene/BN structures. This powerful triad will allow a rigorous investigation of the valley electronic states and phase transitions of this system, answering two important questions: i) What are the characteristics, origin and topology of the valley currents previously measured in graphene/BN aligned structures; and ii) how the valley currents and electron topology can be controlled by crystal axes alignment. This will trace a practical route to investigate and design topological phases in other vdW structures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences mathematics pure mathematics topology
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.