European Commission logo
English English
CORDIS - EU research results
CORDIS

SPin Research IN Graphene

Project description

Graphene holds promise for spintronic devices

Magnetism is a property that had been missing from graphene's impressive list of physical properties – until now. Owing to its unconventional magnetic properties, graphene has been touted as a promising material for spintronics applications. The ambition of the EU-funded SPRING project is to develop an all-graphene platform, where spins can be used for transporting, storing and processing information. Researchers from different disciplines will collaborate to fabricate atomically precise open-shell graphene nanostructures, and manipulate their electron spin and charge, and nuclear spin state. The aim is to test the potential of graphene as a fundamental building block for spintronic devices.

Objective

Future Information Technology will take advantage of quantum materials for efficient information processing and communication. In SPRING, we propose to utilize custom-crafted graphene nanostructures as elementary active components of a new generation of nanoscale quantum spintronic devices. Graphene structures can spontaneously develop intrinsic π-paramagnetism from topological frustrations of their structure. This unconventional magnetism is mobile, long-ranged and can be electrically addressable. The targeted long-term vision is the development of an all-graphene platform, where spins can be used for transporting, storing and processing information. This new technology paradigm will combine fast electron mobility with electrically addressable quantum spins, in a customizable semiconducting platform, envisioning clear impact on scientific, technological and societal stakeholders.

To advance towards this goal, the interdisciplinary project SPRING combines research in physics, chemistry and engineering to fabricate graphene nanostructures with atomic precision, demonstrate and manipulate their electron and nuclear spin states, and test their potential as basic element in quantum spintronic devices. On-surface synthesis strategies will be utilized to create atomically precise open-shell graphene nanostructures with radical character, including frustrated magnetic states, spin-polarized bands, spin chains, and nuclear spins embedded at specific sites. We will demonstrate the emergence of π-magnetization and unveil the time and energy scales of spins in the open-shell structures through a combination of scanning probe and electron spin resonance spectroscopies, and develop novel predictive models of their quantum functionality. The potential of graphene open-shell platforms as a novel paradigm in spin-based logic devices will be tested by incorporating them into model devices and electrically addressing and manipulating spins.

Call for proposal

H2020-FETOPEN-2018-2020

See other projects for this call

Sub call

H2020-FETOPEN-2018-2019-2020-01

Coordinator

ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN NANOCIENCIAS CIC NANOGUNE
Net EU contribution
€ 667 561,25
Address
TOLOSA HIRIBIDEA 76
20018 San Sebastian
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost
€ 667 561,25

Participants (5)