Project description
A quantum memory qubit without the glitches
Compared to classical computers, quantum computers can process exponentially. While classical computers carry out logical operations based on one of two positions, such as on or off, 1 or 0 (which is called a bit), quantum computing uses the quantum state of an object to produce a qubit which are the undefined properties of an object. The EU-funded NOTICE project will bring a paradigm shift in quantum computing to reduce the gap between logical and physical qubits and the need for quantum error correction algorithms. Specifically, it will develop an alternative to today’s qubits made with superconductors junctions or semiconductors quantum dots. It will build a ‘fault-tolerant’ qubit device on Silicon substrate that is immune to decoherence problems.
Objective
Todays quantum computers are suffering from a very high error rate due to decoherence (i.e. loss of quantum information) in their qubits fabricated with superconductors junctions or semiconductors quantum dots. The goal of this proposal is to research radically new materials and architectures to build a fault-tolerant qubit device on Silicon substrate (i.e. scalable), that will be immune to decoherence problems.
In NOTICE, we will design and synthetize novel crystalline perovskite materials, monolithically integrated on a Silicon substrate, with topological insulating properties to enable the generation of Majorana fermions at the heterointerface with a superconductor. The generated Majorana fermions will hold the quantum information in such Majorana qubit which will be resistant to noises and fluctuations due to the topology effect if stable and robust materials presenting the desired properties can be obtained.
Bismuth-based perovskites were down-selected as topological insulator (BaBi(O,F)3) and superconductor ((Ba,K)BiO3) oxides due to the very strong Spin Orbit Coupling present in Bi which will favorize the efficient generation of Majorana fermions at the perfect (pristine) BaBi(O,F)3/(Ba,K)BiO3 heterointerface. With Molecular Beam Epitaxy growth approach together with advanced characterization techniques such as Angle-Resolved PhotoEmission Spectroscopy measurements and ab-initio simulations on the topological insulating properties of the perovskites, we aim to generate a stable topological interface leading to the efficient generation of Majorana fermions. This breakthrough will enable us to fabricate chiral Majorana devices on a Silicon technology platform, providing both reliability and manufacturing scalability.
NOTICE results will pave the way to fault-tolerant qubit, bringing a paradigm shift in quantum computing by reducing drastically the gap between logical and physical qubits and the need for quantum error correction algorithms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesphysical sciencestheoretical physicsparticle physicsfermions
- natural sciencesmathematicspure mathematicstopology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural scienceschemical sciencesinorganic chemistrymetalloids
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
You need to log in or register to use this function
Keywords
Programme(s)
Funding Scheme
ERC-COG - Consolidator GrantHost institution
3001 Leuven
Belgium