Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Novel Oxides and Topological Interfaces for quantum Computing Electronics

Project description

A quantum memory qubit without the glitches

Compared to classical computers, quantum computers can process exponentially. While classical computers carry out logical operations based on one of two positions, such as on or off, 1 or 0 (which is called a bit), quantum computing uses the quantum state of an object to produce a qubit which are the undefined properties of an object. The EU-funded NOTICE project will bring a paradigm shift in quantum computing to reduce the gap between logical and physical qubits and the need for quantum error correction algorithms. Specifically, it will develop an alternative to today’s qubits made with superconductors junctions or semiconductors quantum dots. It will build a ‘fault-tolerant’ qubit device on Silicon substrate that is immune to decoherence problems.

Objective

Todays quantum computers are suffering from a very high error rate due to decoherence (i.e. loss of quantum information) in their qubits fabricated with superconductors junctions or semiconductors quantum dots. The goal of this proposal is to research radically new materials and architectures to build a fault-tolerant qubit device on Silicon substrate (i.e. scalable), that will be immune to decoherence problems.
In NOTICE, we will design and synthetize novel crystalline perovskite materials, monolithically integrated on a Silicon substrate, with topological insulating properties to enable the generation of Majorana fermions at the heterointerface with a superconductor. The generated Majorana fermions will hold the quantum information in such Majorana qubit which will be resistant to noises and fluctuations due to the topology effect if stable and robust materials presenting the desired properties can be obtained.
Bismuth-based perovskites were down-selected as topological insulator (BaBi(O,F)3) and superconductor ((Ba,K)BiO3) oxides due to the very strong Spin Orbit Coupling present in Bi which will favorize the efficient generation of Majorana fermions at the perfect (pristine) BaBi(O,F)3/(Ba,K)BiO3 heterointerface. With Molecular Beam Epitaxy growth approach together with advanced characterization techniques such as Angle-Resolved PhotoEmission Spectroscopy measurements and ab-initio simulations on the topological insulating properties of the perovskites, we aim to generate a stable topological interface leading to the efficient generation of Majorana fermions. This breakthrough will enable us to fabricate chiral Majorana devices on a Silicon technology platform, providing both reliability and manufacturing scalability.
NOTICE results will pave the way to fault-tolerant qubit, bringing a paradigm shift in quantum computing by reducing drastically the gap between logical and physical qubits and the need for quantum error correction algorithms.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-COG

See all projects funded under this call

Host institution

INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 332 691,00
Address
KAPELDREEF 75
3001 Leuven
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 332 691,00

Beneficiaries (1)

My booklet 0 0