Project description
Transferring quantum information using coherent phonons
Interacting qubits are fundamental to quantum information platforms – current experiments use photons to transfer quantum states between qubits. However, recent studies have proposed the acoustic vibrational properties of the material themselves, known as phonons, as a method to coherently couple distant solid-state quantum systems. The EU-funded uNIQUE project aims to develop an electromechanical quantum information platform exploiting the potential presented by surface acoustic waves at single-phonon level, and by mechanical resonators exceeding the standard quantum limit. The project will adopt an approach – unexplored as yet – at the intersection of phononics, nanomechanics and quantum acoustics, to yield a fully coherent mechanical playground that can be used alongside photon qubits or independently as a quantum signal-processing system.
Objective
Over the past thirty years, the remarkable technological advances in microfabrication processes have thrust mechanical vibrations into the quantum realm. The intrinsic coherence of mechanical motion and the capability to couple it to other physical degrees of freedom hold promises of scalable hybrid quantum platforms. But mechanical vibrations are also powerful conveyors of physical information. They are ubiquitously used in wireless communication systems, where bulk and surface acoustic wave (BAW and SAW) devices are prevalent. Their high achievable quality factors and frequencies, as well as their low propagation speed, are appropriate ingredients for information processing: they are synonymous of storage and delay.
Recent works have shown that SAW could be operated in the single-phonon regime, potentially behaving as a quantum bus between solid-state qubits. The proposed approaches, however, do not yet take advantage of wave propagation management at the substrate surface itself.
The uNIQUE project aims at the development of an all-electro-acousto-mechanical quantum information platform exploiting the full potential offered by surface acoustic waves in the single-phonon regime, and by mechanical resonators beyond the standard quantum limit. It adopts a yet unexplored approach at the crossing of phononics, nanomechanics and quantum acoustics to yield a fully coherent mechanical playground that can be used at the interface with other solid-state or photon qubits or as an independent quantum signal processing system. It will exploit the substrate surface to prepare and transfer non-classical states of motion of surface-coupled phononic resonators with the utmost ambition to encode the state information in a travelling single-phonon, allowing remote entanglement. This platform will allow manipulating quantum states in exceedingly compact systems driven by a sheer radio-frequency signal.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radio frequency
- natural sciences physical sciences acoustics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.