Project description
Machine learning for advanced materials development
Phase diagrams display phase relations at the thermodynamic equilibrium state of matter. But most phase diagrams are based on scarce experimental input and often rely on daring extrapolations. The EU-funded Materials 4.0 project will work to change this. It will provide a highly accurate first principles thermodynamic database in order to lift materials design to the next level. Since first principles, alias ab initio, approaches do not require experimental input, they can operate where no experiment is possible. But they have been limited to low-temperature approximations that are not ideal for phase diagrams. The project will consider materials relevant to current scientific developments and technological interest such as hybrids and superalloys.
Objective
Phase diagrams have revolutionized materials development by providing the conditions for phase stabilities and transformations, and thereby a thorough thermodynamic understanding of materials design. However, the majority of todays phase diagrams are based on scarce experimental input and often rely on daring extrapolations. Every multicomponent phase diagram relies on a fragile set of phase stabilities as very recent studies show.
Materials 4.0 will change this. It will raise materials design to the next level by providing a highly accurate first principles thermodynamic database. First principles, alias ab initio, approaches do not require any experimental input and can operate where no experiment is able to reach. However, they have been limited to zero Kelvin or low temperature approximations which are not representative of phase diagrams.
Materials 4.0 reaches far beyond this by utilizing my unique expertise in high-accuracy finite-temperature ab initio simulations. We will develop novel methods accelerated by machine learning potentials that facilitate a highly efficient determination of Gibbs free energies and migration barriers including all relevant finite-temperature excitation mechanisms. The methodology will be implemented in an easy-to-use open-source integrated development environment and made accessible to the community.
Materials 4.0 will consider materials relevant to current scientific developments and of technological interest, such as hydrides, lightweight alloys, superalloys, MAX phases, and high entropy alloys. A large ab initio thermodynamic database will be computed for elements across the periodic table. The main focus will be on phase stabilities of various phases, including dynamically unstable ones, and importantly liquids as well; all fully from ab initio. The phase stabilities will be put into practice by re-parametrizing binary phase diagrams and studying the implications on multicomponent phase diagrams.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
70174 Stuttgart
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.