Project description
Teaching machines to understand what they see
Generating images with the aid of computers has come a long way. Today’s technology and algorithms can simulate the world around us. What is more, the computer vision technique can recognise and predict identities and actions from pictures or videos. However, computer vision cannot manage 3D shapes correctly, and its semantics are not matched with pixel-perfect appearances. As a result, the designing of 3D environments, such as in games or films, remains laborious. The EU-funded PIPE project will work to solve these problems with new models that combine computer vision and simulation with machine learning for pixel-perfect 3D vision and generative modelling. With the use of deep convolutional neural networks learning, it will allow the creation of realistic samples of meaningful synthetic images.
Objective
                                A fascinating tension exists between computer vision and computer graphics. Decades of research efforts have led to the  ability of graphics algorithms to simulate the world to a degree often indistinguishable from reality -- given an accurate enough model of scene geometry and appearance. Similarly, decades of ingenuity have given computer vision techniques the already, at times, superhuman capability of detecting, recognizing, and predicting objects, actions, and identities from pictures or video.
Vision and graphics meet at a common point of pain: the model of scene geometry and appearance. To yield photorealistic results, graphics algorithms require an essentially perfect forward model. Yet, the capability of computer vision algorithms to robustly and accurately reason about the 3D shape and appearance of the world, unfortunately, greatly lags behind the capabilities to detect, recognize, segment, and so on. A great discrepancy exists between the semantic and the pixel-perfect, accurate shape and appearance. Bridging this chasm is the goal of this research.
This entails solving fundamental, long-standing, unsolved problems in computer vision through the aid of computer graphics and machine learning}. First, we seek to  simultaneously capture accurate 3D shape and appearance of complex real-world scenes from photographic inputs; second, we seek to extend these capabilities still further to``zero-shot'' generative modelling. These extremely ambitious goals will be reached by marrying simulation (rendering) and machine learning, building on the PI's three existing strengths: (1) ability to capture photorealistic material appearance models using commodity devices; (2) his leading standing in physically-based image synthesis; and (3) his results on generative modeling of photorealistic images through deep convolutional neural networks.
                            
                                Fields of science (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            
                                                                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
            Programme(s)
            
              
              
                Multi-annual funding programmes that define the EU’s priorities for research and innovation.
                
              
            
          
                      Multi-annual funding programmes that define the EU’s priorities for research and innovation.
- 
                  H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
                                      MAIN PROGRAMME
                                    
 See all projects funded under this programme
            Topic(s)
            
              
              
                Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
                
              
            
          
                      
                  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
            Funding Scheme
            
              
              
                Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
                
              
            
          
                      Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
              Call for proposal
                
                  
                  
                    Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
                    
                  
                
            
                          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
 
           
        