Project description
How the shape of the brain sheds light on the neural substrates of cognition
A key challenge for understanding the human cerebral cortex is gaining insight into how it gives rise to our diverse and complex cognitive abilities. Unlike sensory processing, which is largely localised to specific regions, cognitive functions are known to be subserved by large-scale distributed networks. However, the factors that influence how they are spatially arranged and how that layout enables and constrains the emergence of different functions remains unknown. The EU-funded CORTIGRAD project will investigate ‘zones of integration’ — a novel hypothesis that the spatial distances to different sensory areas play a central role in determining the unique cognitive functions that arise throughout the cerebral cortex.
Objective
Historically, cognitive neuroscience has focused on discrete, mutually exclusive modules or networks, however, current network-level descriptions of brain organization fail to account for integrated features of cognition. I recently described a principal gradient in cortical connectivity that reflects how activity from primary sensory/motor areas is integrated into transmodal regions of the default-mode network. This novel line of research led me to hypothesize that coherent aspects of cognition are an emergent property of a whole brain architecture consisting of multiple zones of integration. In particular, I hypothesize that each region of transmodal cortex is the apex of a zone of integration that is anchored by multiple unimodal cortical regions. To investigate the mechanism that allows abstract representations to form in transmodal systems, I first propose structural studies to investigate covariance in zone geometry across healthy adults, how zones have emerged through evolution and how they change across the lifespan. I will then explore the functional consequence of zones of integration for higher-order human cognition. I will examine if individual differences in cognition emerges from variation in the architecture of different zones, and how brain activity is altered when simple decisions depend on integrating information from multiple zones. Finally, I will examine how the absence of input from a sensory modality (through congenital deafness or blindness) alters the structure and function of transmodal regions in a zone-specific manner. By describing how the spatial layout of the cortex shapes its functions, this research provides a radically new framework for understanding the structural constraints that underpin the integrated nature of human cognition.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.