Objective We propose a theoretical investigation of the practical use of quantum optical systems for the implementation of quantum information processing. Employing a range of techniques and approaches, we will pursue the general scientific objective of identifying and characterizing optimized procedures for high-fidelity, robust and efficient quantum memories and gates involving atomic and condensed-matter systems. The main focus will be on coherent control of individual atoms in microscopic potentials. Existing gat e proposals will be improved and new schemes will be proposed, relying on one hand on interaction mechanisms (e.g. molecular couplings) not yet fully exploited for enhancing entangling operations, and on the other hand on quantum optimal control methods t o increase gate fidelities. Particular attention will be paid to the choice of qubit degrees of freedom and of manipulation procedures intrinsically less sensitive to decoherence sources and to imperfections in the control of the system, in order to relax experimental constraints for effective quantum computing. Innovative qubit manipulation and interfacing mechanisms in the context of mesoscopic condensed matter will be explored, in the sense of coupling to nanofabricated structures like quantum dots, supe rconducting devices and nanotubes. The training objectives concern on one hand deepening and broadening the applicant¿s core competence in quantum optics and atomic physics applied to quantum information processing, and on the other hand complementing it w ith new knowledge in the field of condensed-matter mesoscopic systems and with new skills in the management of international scientific collaboration at the extra-European level, in view of consolidating prospects for independent research in the context of the return host institution, possibly even after the completion of the project. Fields of science natural sciencesphysical sciencesatomic physicsengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computersnatural sciencesphysical sciencesopticsnatural sciencesphysical sciencesquantum physicsquantum optics Keywords Quantum information processing and communication coherent control entanglement molecular interactions quantum dots quantum gate implementations quantum optics ultracold atomic gases Programme(s) FP6-MOBILITY - Human resources and Mobility in the specific programme for research, technological development and demonstration "Structuring the European Research Area" under the Sixth Framework Programme 2002-2006 Topic(s) MOBILITY-2.2 - Marie Curie Outgoing International Fellowships (OIF) Call for proposal FP6-2002-MOBILITY-6 See other projects for this call Funding Scheme OIF - Marie Curie actions-Outgoing International Fellowships Coordinator CONSIGLIO NAZIONALE DELLE RICERCHE Address Piazzale aldo moro 7 Roma Italy See on map Links Website Opens in new window EU contribution € 0,00 Participants (1) Sort alphabetically Sort by EU Contribution Expand all Collapse all HARVARD UNIVERSITY United States EU contribution € 0,00 Address 1350 massachusetts ave. Cambridge, ma See on map Links Website Opens in new window