Project description
Packing higher capacities in smaller batteries
Battery technology has evolved dynamically since Italian physicist Alessandro Volta unveiled the first battery in 1799. We use batteries today to power our mobile telephones and start our cars. The EU-funded FOCALSPEC project is looking to the future, designing a smaller battery with higher capabilities. It is developing 3D imaging sensors that offer laboratory level measurement accuracy for detecting microscopic imperfections on battery electrodes at the speed of manufacturing lines (moving three metres per second). The project’s main goal is to increase the speed of its core 3D imaging sensors by over 100x and implement it into a new, real-time measurement sensor to significantly improve Li-ion battery safety in electric cars.
Objective
With the market appetite for electric cars and consumer electronics increasing globally, battery manufacturers need to pack higher capacities into ever-smaller battery sizes. This sets extreme demands on manufacturing precision to ensure battery safety. Failing to do so caused for example the global Samsung smartphone recall in 2016 – microscopic imperfections in electrodes were too small to detect. Those imperfections led the batteries to short circuits, putting consumers in direct danger. While this might sound like a small issue concerning high-end smartphones – imagine if similar incidents happen in electric cars.
FocalSpec revolutionary 3D imaging sensors offer laboratory level measurement accuracy for detecting microscopic imperfections on battery electrodes at the speed of manufacturing lines (moving 3 meters per second). Our technology enables carrying out submicron-level analysis of shapes, profiles, textures, thicknesses, dimensions, roughness, etc. No other industrial measurement solution, including laser, is able to combine such speed and precision. Other quality control systems cannot distinguish between 2D and 3D defects at so high speed, and are therefore not reliable in e.g. high capacity Li-ion battery manufacturing.
Having validated the technical feasibility and major market demand for on-line version of our sensors, we will prepare our technology for wide scale adoption during this Phase 2 project. Our main objective is increasing the speed of our core 3D imaging sensors by over 100x and implementing it into a new, real-time measurement sensor that will significantly improve Li-ion battery safety in electric cars, which is a major up-and-coming growth area for the European industry. This opens up a total addressable market of over €1 billion already in the first five years following the project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electric batteries
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications mobile phones
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-EIC-SMEInst-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
90590 Oulu
Finland
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.