Project description
Battery manufacturers will be charging ahead with an open-source modelling platform
Rechargeable lithium-ion batteries (LIBs) power everything from portable electronics to electric cars. Since the first one was launched nearly 30 years ago, they have continued to evolve to support rapid innovation of the products that depend on them. A critical bottleneck in today's LIBs is the cathode material. Cathodes based on nickel-manganese-cobalt (NMC) are among the most promising. These materials could significantly reduce costs and enable longer driving ranges for tomorrow's electric vehicles. The EU-funded DEFACTO project plans to turbocharge the development of next-generation LIBs for the automotive market with a comprehensive open-source modelling tool. Using experimental data from two existing NMC cells to optimise algorithms, the platform promises to reduce development time and cost while enhancing performance and durability.
Objective
The DEFACTO project rationale is to develop a multiphysic and multiscale modelling integrated tool to better understand the material, cell and manufacturing process behaviour, therefore allowing to accelerate cell development and the R&I process. This approach will allow developing new high capacity and high voltage Li-ion cell generation 3b battery. This will increase the understanding of multiscale mechanisms and their interactions, reducing the R&D cell development resources, therefore unlocking an innovation-led cell manufacturing industry in Europe. The validated computational simulations will be a powerful tool to (i) tailor new optimum cell designs, (ii) optimise manufacturing steps of electrode processing and electrolyte filling, and (iii) shape new generation 3b materials.
This work will be based on an iterative exchange process for model development, validation and optimisation using two cell technologies for the automotive market: a commercial NMC622/G cell taken from the product portfolio from one of the DEFACTO partners and last generation prototypes (NMC811/G-Si). Characterisation tests will provide data for model development and validation, and for gaining understanding on ageing mechanisms. Sensitivity analysis will demonstrate model robustness and reduce the number of experiments needed during cell development. The optimization algorithms will enhance cell performance and durability through optimised designs and manufacturing processes. The novel fast-track cell development procedure achieved will be further extended to LMNO/G-Si prototypes. In parallel, the set of individual multiscale and multiphysic models will be compiled in an open-source simulation tool, including mechanical and electrochemical ageing with outstanding accuracy at reasonable computational cost. The project consortium, which covers the whole cell manufacturing value chain, has the required experience to ensure a smooth and high-quality delivery of the outcomes of the project.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LC-BAT-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20014 San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.