Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Implementation and preclinical testing of a closed-loop control system for deep brain stimulation

Project description

Novel control system algorithm for deep brain stimulation

Deep brain stimulation (DBS) involves a procedure to implant a device that sends electrical signals to brain areas responsible for body movement. In recent years, DBS has emerged as a treatment for the symptoms of Parkinson's disease. However, the mechanisms of DBS are poorly understood, and patient treatment is inefficient due to the suboptimal programming of stimulus parameters. Current DBS systems operate in an 'open-loop' configuration with parameters empirically set for the remaining time of stimulation. Closed-loop DBS represents a new approach that has the potential to overcome current limitations by automatically adjusting stimulation parameters as required. The EU-funded DBScontrol project has developed computational models of the neural circuits in the brain during DBS to test novel algorithms for closed-loop treatment. The goal of the current feasibility phase is to demonstrate an implementation on a prototype device and carry out pre-clinical testing in animal models.

Objective

Over the past 25 years deep brain stimulation (DBS) has emerged as an effective treatment for the symptoms of Parkinson's disease (PD). Despite its success, the mechanisms of DBS are not yet fully understood. Moreover, patients experience side effects and poor control of symptoms associated with suboptimal programming of stimulus parameters. Current DBS systems operate in an 'open-loop' configuration with stimulus parameters (pulse amplitude, duration and frequency) empirically set and remaining fixed over time. Closed-loop DBS offers an alternative approach that has the potential to overcome current limitations and increase therapeutic efficacy, while reducing side-effects and increasing battery life, by automatically adjusting stimulation parameters as required. Although the potential benefits of closed-loop DBS are widely recognised, these systems have not yet been implemented clinically. Under the parent ERC project DBSmodel, we have developed biophysically detailed computational models of the neural circuits in the brain during DBS and are using these to develop and test novel algorithms for closed-loop DBS. Before these can be trialled in humans, however, feasibility must first to be demonstrated through implementation on a prototype device and pre-clinical testing in animal models. ERC proof of concept funding will enable us to do this by implementing and testing a novel closed-loop DBS system in an animal model of PD. The experimental validation will confirm the efficacy of a prototype solution suitable for translation to human studies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-PoC

See all projects funded under this call

Host institution

UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Address
BELFIELD
4 Dublin
Ireland

See on map

Region
Ireland Eastern and Midland Dublin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0