Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum Nonlinear Optics in Atomic Arrays

Project description

Interactions of light with densely packed arrays of atoms yield exotic optical effects

Despite significant research efforts thus far, it remains challenging to realise robust, controllable interactions between single photons. Being able to harness that power will open the door to novel quantum and optical technologies, as well as interesting new physical phenomena. The EU-funded QUANLUX project intends to theoretically put forward novel light–matter interfaces in which quantum nonlinear optics can be robustly realised, based on exploiting strong interference effects in light emission in atomic arrays. The project will also develop advanced numerical and analytical techniques to better understand the complex dynamics that can occur in such systems.

Objective

Nonlinear optical processes are at the foundation of many applications in modern science and engineering. The emerging field of Quantum Technologies is now demanding that we push these processes into the realm of Quantum Nonlinear Optics (QNLO) where nonlinear effects occur at the level of individual photons. Achieving such a regime would allow the generation and manipulation of non-classical states of light and would open exciting new scenarios involving quantum many-body physics of light. Despite the great efforts that have been invested along this line of research, significant improvements are still necessary to fully achieve the QNLO regime.
QUANLUX aims to tackle this challenge by proposing a novel light-matter interface consisting of ordered atomic arrays as an ideal platform to implement QNLO processes. The ultimate objectives consist in identifying new strategies for QNLO protocols that can possibly surpass previously established performance bounds as well as investigating the complex emergent behaviour of strongly interacting photons.
To tackle and solve these demanding problems the fellow will make use of advanced numerical and theoretical techniques developed in condensed matter and many-body physics (e.g. tensor networks and diagrammatic approaches) that will be acquired through dedicated training visits to experts in the field. The proposed dissemination and outreach program will progressively spread the outcome of the action to the scientific community and to the general public reinforcing the impact of the research’s results.
The originality and multidisciplinary nature of the proposal have the potential to revolutionize the major paradigms currently used to implement QNLO processes and drive a technological innovation in the construction of light-matter interfaces. The action will be conducted by Giuseppe Calajò who will join the Theoretical Quantum Nanophotonics group lead by Prof. Darrick Chang at ICFO, Spain.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 932,48
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 172 932,48
My booklet 0 0