Project description
A new approach to quantum optics experiments
Exciting atoms and molecules with ultrashort light pulses can reveal new details of their inner workings. Researchers of the EU-funded QPAP project will take a step in a new direction – deeper into the world of quantum mechanics. In quantum optics, experiments are often carried out using individual photons or ions. The QPAP team will instead use short electron 'wave packets' created by absorption of laser-based attosecond pulses. Researchers plan to create electron waves in a controlled way and study how well and for how long they can be made to interfere with each other. Furthermore, entangled electron pairs will be created and studied in the time domain. This research is of interest not only within attosecond science and atomic and molecular physics in general; it might shed new lights on fundamental quantum physics.
Objective
This project lies at the crossing of attosecond science, photoionization of atoms and molecules and quantum optics. Progress in the performances of the attosecond sources, in particular regarding repetition rate, now enables us to perform photoionization studies of atoms and molecules using advanced coincidence/three dimensional momentum techniques. Adding an additional dimension, the phase, which is accessible by attosecond interferometric techniques, we will able to follow in time the quantum properties of the studied processes.
The aim of the present application is to perform quantum optics experiments, not with photons as in conventional quantum optics, but with electron wave-packets created by absorption of attosecond light pulses.
Our objectives are
- to characterize and study in the time domain the quantum coherence of attosecond electron wavepackets,
- to control quantum interferences of electron wavepackets using a small number of attosecond pulses and
- to create and follow in time entangled two-electron attosecond wavepackets.
The experiments will use advanced laser systems, attosecond sources and electron detectors. A unique 200-kHz repetition rate laser system based on optical parametric chirped pulse amplification technology, combined with an efficient attosecond source and a three-dimensional momentum electron detector will open the door to attosecond experiments where the kinematics of the light-matter interaction can be recorded.
The success in achieving the above objectives will not only lead to a major leap forward in attosecond science and atomic and molecular physics in general; it might shed new lights in fundamental quantum physics, given the originality of the studied systems, attosecond electron wave packets and the versatility of the tools, providing four dimensional information (momentum and time) for multiple particles.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22100 Lund
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.