Project description
Helping molecular gases reach the quantum ground state
Bose–Einstein condensates (BECs) are a relatively new state of matter first achieved in the 1990s. Decades before, building on work done by Bose, Einstein had predicted that gaseous atoms cooled to near absolute zero would all occupy the lowest possible quantum energy state (ground state), subjecting them to ultimate control. In 2001, the Nobel Prize in Physics was awarded to the scientists who eventually achieved Bose–Einstein condensation in dilute gases of alkali atoms. These ground-breaking experiments spawned a new generation of research characterised by rapid theoretical and experimental progress. However, the molecular equivalents of the atomic BECs remain elusive. The EU-funded MOLBEC project is pursuing its promising experimental paradigm to cool molecules to extreme temperatures and demonstrate molecular BECs, something that has been complicated by the natural molecular vibrations and rotations characteristic of molecular bonds.
Objective
Generating a Bose Einstein Condensate (BEC) or Fermi gas of molecules is a long-standing goal of modern molecular science. Molecular BEC is a macroscopic millimeter-size quantum object with a large number of molecules occupying the lowest center-of-mass quantum state. In stark contrast to atoms, molecules possess internal degrees of freedom and stronger interactions that lead to the emergence of new phenomena. Strong dipole-dipole interactions give rise to new ordered states of matter, quantum crystals. Many-body effects start dominating collision dynamics where even molecular rotational excitations are dissipated as angular-momenta-carrying quasiparticles within the condensate.
Despite intense experimental efforts, these fascinating ideas remain in the realm of theory. The main difficulty in turning theory into reality has been the absence of general molecular cooling methods. Recently, we have demonstrated the first experiment where collisions between cold molecules trapped in a 1 K deep superconducting magnetic trap are achieved without laser cooling [Segev et al. Nature, 572 (2019)], opening a clear path to molecular evaporation.
We here propose to cool molecules by removing the fastest ones from the trap and letting the rest thermalize to lower temperatures via collisions. This method has been used to produce atomic BECs and we are the first group reaching identical initial conditions that are necessary for the successful application of the evaporative cooling. Generality of our approach is the key to successful search for a suitable molecular candidate. As an alternative to evaporation we suggest applying direct laser cooling on magnetically stopped NH radicals. We are confident that one of our approaches will lead to the long-sought generation of molecular quantum degenerate gas.
Our proposal opens new fields and will find applications in areas ranging from quantum chemistry to quantum information science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences computer security cryptography
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
44227 Dortmund
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.