Project description
Studying top-down interactions at different biological scales
At different biological scales, new properties in form and function often have an impact on proteins, DNA and RNA, the lower-scale components of the central dogma of biology. It is important to quantify these top-down effects to predict and understand the complexity of cell fate determination. To address this, the EU-funded CROSSINGSCALES project will apply quantitative imaging and genome-wide transcriptomics on stem cell cultures and early zebrafish embryos. Results will create a holistic view of nuclear and chromatin states, gene expression, subcellular organisation and tissue-scale organisation across millions of individual cells. The project will contribute towards the understanding of the dynamic, spatiotemporally controlled interaction of gene expression and cellular signalling that drive life as we know it.
Objective
The central dogma in biology often invokes a bottom-up picture of life. However, at different biological scales, new properties in form and function arise that have a superseding causal impact on the behaviour of the lower-scale components from which these new properties emerge. These top-down or reverse scale-crossing effects must be taken into account in order to make predictions about spatiotemporally controlled single-cell fates, activities, levels of gene expression, or the functional outcome of cellular signalling. They can stem from the multicellular, the cellular, and the intracellular scale, and can be quantified using multiscale and multiplexed RNA and protein state imaging in combination with computer vision and data-driven modelling. The ability to comprehensively map these reverse causal effects across multiple scales has the potential to revolutionize most, if not all domains of biology and medicine. In this project, we will establish the importance of reverse causal effects in human induced pluripotent stem cells and early D. rerio embryos. To achieve this, we will develop a quantitative imaging method beyond the diffraction limit of light without compromising scalability in temporal and spatial dimensions. We will also develop a method that achieves scalable, transcriptome-wide image-based multiplexing of mRNA transcripts, and we will extend our computer vision approaches to higher resolution and to three spatial dimensions. These methods will be systematically applied to stem cell collectives grown in 2D and 3D, as well as to early embryos, achieving comprehensive quantification of nuclear and chromatin states, gene expression, subcellular organization, cellular states, and tissue-scale organization across millions of individual cells within the same dataset. These datasets will be used to quantify how, at different scales, new properties in form and function arise that have a superseding causal impact on the behaviour of the lower-scale components
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics RNA
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8006 Zurich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.