Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Understanding Crystal Polymorph Control in Confinement using In-situ TEM

Project description

Crystals get creative in small spaces

Living and non-living systems on the nanoscale exhibit a variety of properties and behaviours that are not seen in the same systems at larger scales. Among these are crystals. Recent studies have demonstrated unusual crystal structures emerging from the precipitation of crystals in confinement, opening the door to controlled processing for applications in fields ranging from materials science to drug development. The EU-funded PolyTEM project is combining two cutting-edge techniques to get a better handle on underlying mechanisms through snapshots of structural changes over time together with dynamic high time resolution analyses. Focussing on a model system of calcium carbonate formation in graphene pockets, the team is shining light on the unusual processes of crystal formation in confined spaces.

Objective

Controlling the polymorph (crystal structure) of crystalline materials is of vital importance to both material science and the pharmaceutical industry. Many crystal polymorphs are difficult to access, however, as polymorph is determined by both kinetics and thermodynamics. Recently, it has been observed that precipitation of crystals in confinement often leads to the formation of unusual polymorphs. For example, CaCO3 forms purely as aragonite when it is precipitated in small nano-pores. These observations suggest that confinement could offer a generic route to polymorph control. However, the fundamental mechanisms underlying this confinement effect are poorly understood.
In this project, I will combine in-situ cryogenic transmission electron microscopy (cryoTEM) and liquid phase (LP) TEM to study how confinement effects give rise to polymorph control. In-situ cryoTEM allows detailed structural analysis of “snapshots” of the nucleation process, while LPTEM enables dynamic, time-resolved analysis with millisecond time resolution. Notably, although these two advanced techniques perfectly complement each other, they have never been combined to study one system.
CaCO3 will form the principal focus of the study, and a graphene pocket (GP) will be used as the confinement system as it not only favours aragonite formation, but is also ideally suited to both cryoTEM and LPTEM studies. The study will reveal how CaCO3 nucleate in the GPs and develop into aragonite, and the role of surface chemistry in this polymorph control process will be investigated. The project will then be extended to functional materials (e.g. TiO2) or drug crystals (e.g. Ritonavir), in order to learn how to use confinement to control polymorph by design. The research will allow us to fully understand the formation of aragonite in nano-sized confinements and more fundamentally, will bridge the gap in knowledge about how crystal polymorph in general is controlled in confinement.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

UNIVERSITY OF LEEDS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0