Project description
Optimising two-dimensional crystals and van der Waals heterostructures
In recent years, due to the rising concern over climate change and the environment, there has been growing interest in ecologically friendly energy sources. One of the most important of these is solar cells. Currently, new developments in solar cell technologies – specifically, two-dimensional crystals and van der Waals heterostructures – have been attracting attention to solar cells and their improved capabilities. Despite this, these new technologies have yet to be implemented. The EU-funded CAMPVANS project aims to improve and optimise the use of these technologies to make them more viable for the market.
Objective
Presently, the two-dimensional (2-D) crystals and their van der Waals heterostructures (vdWHs) are attracting a lot of attention from the scientific community due to the unique features that they offer such as the possibility to widely tune their band gap, study strong light-matter interactions at the ultimate thickness limit. These features are of great relevance for the light harvesting applications as in photodiodes and photovoltaic cells. In this project, we propose to optimise the (opto-)electrical and photovoltaic behaviours of these components. The state-of-the-art ab-initio quantum transport solver relying on the density-functional theory and the Non-Equilibrium Green’s Function formalism will be employed to simulate the I-V characteristics of single- and multiple-junction vdWHs as well as their optoelectronic and photoresponse properties. Electron interactions with phonons and photons will be taken into account to ensure very accurate performance predictions. The validity of our models will be tested by comparing our results for vdWH-based devices with experimental data from our collaborators. These results will advance our understanding of the light-matter interaction in the atomistic scale vdWH junctions. We will then investigate whether the innovative idea of using the inter-layer carrier multiplication will lead to significant improvement of the light conversion efficiency of the photovoltaic cells. Novel vdWH-based superlattice photovoltaic cells will be designed and optimised with the precisely calibrated atomistic simulator. The most promising device configuration will serve as reliable design guidelines for our experimental collaborators so that the designed devices can be manufactured and characterised. This project aims to significantly increase the light conversion efficiency of vdWH-based solar cells by enabling the cascade inter-layer carrier multiplication.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences atomic physics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.