Project description
New aromatic molecules generating long-lived excitons for efficient solar cells
Most solar cells work on the same principle: a photon generates an exciton, a bound state of an electron and an electron hole, which can then be converted into electricity. Certain organic molecules can generate two excitons from a single photon, thereby increasing the amount of electricity the solar cell can produce when irradiated. A big challenge associated with this so-called singlet fission process is that organic molecules are not stable. As a result, excitons live for a very short time, making it difficult to be harnessed for electricity. The EU-funded EXAM project will take advantage of aromaticity – a property of some unusually stable organic molecules – to design stable singlet fission materials. This new design method can help increase the efficiency of solar cells.
Objective
Singlet exciton fission is a carrier multiplication process in organic semiconductors that generates two electron-hole pairs for one photon absorbed, affording quantum efficiencies up to 200%. Photovoltaic devices based on singlet fission have received large attention recently for their potential in efficiency enhancement and to break the Shockley-Queisser limit on the efficiency of single-junction photovoltaics. Recent advancements in singlet fission have been materials-limited due to the rarity of molecules which meet the essential energetic requirement for the process, that the energy of the lowest triplet excited state be approximately half the energy of the lowest singlet excited state. Also important is to ensure the chemical stability of the candidate compounds that would broaden their application prospect. In this proposal, we exploit the excited-state aromaticity view to manipulate the excited state energy levels and build novel singlet fission candidates. Based on theoretical and experimental study, selective models will be evaluated, synthesized and analysed, aiming at a novel strategy for manipulating the excited state energy and stability of organic semiconductors with the aromaticity view. The main aimis to demonstrate highly stable, tuneable organic materials which undergo singlet fission through exploitation of the aromaticity of both the ground state and excited states and feasible design rules for these materials. The materials are expected to be promising candidates as singlet fission functional layer for solar cells and other multiple exciton generation applications. The result concept represents better understanding and tailoring excited state properties of organic semiconductors, which can be expended to wide range of materials with particular excited state nature for even wider application prospect.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences condensed matter physics quasiparticles
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences organic chemistry aromatic compounds
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.