Project description
Materials science: lessons from embryonic development
Morphogenesis is the biological process responsible for producing the complex shapes of organisms from the blastocyst. It is a multistep process orchestrated by biomolecules known as morphogens. Inspired by morphogenesis, the EU-funded DNAGAM project is working towards the first-ever synthetic biocompatible material that can self-organise in a programmable and autonomous manner. The biomaterial incorporates a DNA-based chemical network capable of generating single-stranded DNA morphogens in a unique yet spatially predictable manner. The DNA morphogens will guide kinesin motor proteins and microtubules to form morphological structures within hydrogels. The project's results will not only provide invaluable insight into how morphogen patterns drive material self-organisation, but also expand materials science applications in soft robotics and biological environments.
Objective
Programming the autonomous and multiscale structuring of shapeless synthetic soft matter is unknown and conceptually challenging. In stark contrast, a living embryo is highly ordered at all levels – from cells to the entire organism. The ordering is a multistep process, starting from the patterning of biomolecules (morphogens) which later instruct autonomous shape transformations (morphogenesis). Inspired by these natural physicochemical processes, we aim at the preparation of a first-ever synthetic biocompatible material which can be self-organized in a programmable and autonomous manner. The programming will be achieved by an out-of-equilibrium DNA-based chemical network which predictably generates single-stranded DNA morphogens. Combined with diffusion, the concentrations of the morphogen can be patterned with a unique spatiotemporal precision, including travelling waves and stable fronts, which were pioneered by the host group. The autonomy of morphological structuring will be accomplished by linking the mechanical activity of active gels, composed of DNA-kinesins and microtubules, to the presence of the DNA morphogen. Latter will act as a cross-linker creating the clusters of kinesins and thus guiding the self-organization of the soft material by the collective action of nanoscale kinesin motor proteins which exert force on microtubules. Apart from the preparation of a first biocompatible man-made morphogenetic material, we will learn how the self-organization of active gels is dependent on morphogens’ patterns. This knowledge is indispensable for the advanced programming of the precise macroscale shapes at the molecular level of chemical networks, which are diverse and modular. With further developments, our methodology could lead to so far elusive self-fabricated, force-exerting synthetic soft matter with the potential of integration in soft robotics and biological environments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences biological sciences biochemistry biomolecules proteins
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics soft robotics
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-CAR - CAR – Career Restart panel
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.