Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nanocrystals for CO2 Reduction

Project description

Nanocrystals to catalyse CO2 reduction reaction

Materials that successfully and selectively catalyse the reduction of CO2(CO2RR) into chemical raw materials could drive a sustainable zero-emission energy conversion cycle in the production of fuels and base chemicals. Colloidal techniques have been instrumental in the synthesis of metallic nanocrystals (NCs). These perform perfect selectivity for energy-dense products. As such, the rationalisation of the NC synthesis pathway, stability in operando and the CO2RR mechanism they catalyse represent a great challenge. The EU-funded NANOCO2RE project will promote the synthesis of effective and solid colloidal NCs for CO2RR by empowering the study of all NC life stages through accurate in silico research. It will combine electronic structure, improved sampling and Big Data techniques to establish rational design standards in the synthesis of solid and selective NCs for CO2RR.

Objective

Materials that efficiently and selectively catalyse the reduction of CO2(CO2RR) into chemical feedstocks would open the path to a sustainable zero-emission energy conversion cycle in the making of fuels and base chemicals. Colloidal techniques demonstrated as impactful in the synthesis of metallic nanocrystals (NCs) presenting optimal selectivity towards energy dense products, ideal for energy storage. The challenges in rationalizing NCs synthesis pathway, stability in-operando, and the CO2RR mechanism they catalyse thus present a great reward.

To promote the synthesis of efficient and stable colloidal NCs for CO2RR, NanoCO2RE will encompass the study of all NCs life-stages by means of systematic in-silico investigations probing:
1) NCs application as catalysts, by screening the selectivity and activity of a large number of non equivalent adsorption sites that catalyse CO2RR, to identify the ideal ones to be engineered in a high-performance NC.
2) NCs eventual degradation in-operando, by sampling structural rearrangement in NCs presenting different size, shape, composition under reaction conditions, to single out suitable designs preventing detrimental NC restructuring.
3) NCs growth pathways, to establish NCs programmable synthesis route as a function of tunable parameters (precursors, temperature, reagents).

NanoCO2RE will exploit the combination of electronic structure, enhanced sampling, and big-data techniques to encode the necessary realistic complexity and predictive accuracy, and in turn to establish rational design criteria in the synthesis of stable and selective nanocatalysts for CO2RR. Beyond the use of state-of-the-art numerical tool, a strong interdisciplinary approach is at the grounds of the project: in-silico investigations will be synergically paralleled by akin experimental studies in the host laboratory. Theory and experiments coming together is indeed key in achieving advances in the rational design of nanocatalysts.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 191 149,44
Address
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 191 149,44
My booklet 0 0