Project description
Advancing our understanding of dynamos
It is generally accepted that magnetic fields are created by the motions of conductive fluids – hydromagnetic dynamos. However, little is known about their origin and evolution. What is known is that dynamos arise from interactions of the flow and field on an extremely vast range of space- and timescales. The EU-funded DynMode project will apply an innovative data-driven method from dynamical systems theory to explain the nature of inter-scale non-linear interactions and advance understanding of dynamos. It will create non-linear reduced-order models of astrophysical dynamos representing dynamics on large, medium and small levels. It will explain interactions between small-scale and large-scale dynamos and their non-linear saturation, as well as physics of weak and strong geodynamos.
Objective
Magnetic fields are ubiquitous in the Universe, and are thought to play a key role in evolution of stars, planets, accretion discs and black holes. Although it is generally accepted that these fields are created by the motions of conductive fluids – hydromagnetic dynamos, there is no ab initio predictive theory for their origin and evolution. Because of nonlinear coupling between magnetic field and fluid flow, and also due to extreme parameters of astrophysical objects, dynamos arise from interactions of the flow and field on extremely vast range of space and time scales. This limits the utility of computational approaches.
The DynMode project seeks to elucidate the nature of interscale nonlinear interactions using the novel data-based approach from dynamical systems theory, and to create nonlinear reduced-order models of astrophysical dynamos that represent dynamics on large, intermediate and small scales. This is crucial for our understanding of the operation of astrophysical dynamos. During this Fellowship, we will decompose the data of dynamo flows into dynamically relevant blocks (modes), identify principal nonlinear dynamics and energy exchange among those blocks, and create a reduced-order dynamo model by projecting the flow onto them. By analyzing data sets from self-sustained and convective-driven dynamos in different geometries, we will also address the question of intrinsic dynamo features as compared to influence of secondary physical effects and flow geometry. This approach, applied for the first time in dynamo research, will explain interactions between small-scale and large-scale dynamos and their nonlinear saturation, as well as physics of weak and strong geodynamos.
The project, bringing together physical modelling of the dynamos, study of the flow and magnetic field structures, and innovative data-driven strategy, has a potential to significantly advance the current understanding of dynamos, and impact wider research community in fluid dynamics
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- natural sciences mathematics applied mathematics dynamical systems
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences physical sciences astronomy astrophysics black holes
- natural sciences mathematics pure mathematics geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
LS2 9JT Leeds
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.