Objective
The intent of this project is the exploration of thermo- and hydrodynamics of water flows in reverse osmosis membranes and heat exchangers within water treatment plants. Fouling, the attachment or adsorption of substances onto the process equipment, limits heat and mass transfer, thus, the operation of the unit. A major fouling phenomenon in aqueous systems is scale formation due to precipitation of salts in water. Calcium carbonate and calcium sulphate are predominant sparingly soluble salts that are present in the seawater as well as brackish and industrial water systems.
The first emphasis is the set-up of a model yielding consistent sets of thermodynamic properties (heat capacity, density, vapour pressure, osmotic pressure) for the aqueous systems. This model has two answer two purposes: applicability to numerical flow simulation and validity for a wide range of operating conditions - 0 to 100 bar in reverse osmosis membranes and 0 to 150oC in heat exchangers at salinities up to 15 weight percent. Thus, a main effort is the modelling of the effects of varying temperature and pressure on the electrolyte equilibria. The topic of co-precipitation is addressed by differing equilibrium formulations, the range of validity and the applicability of the laws of thermodynamics is investigated. The second emphasis is the implementation of the thermodynamic model into a numerical flow simulation program.
An existing stand-alone flow simulation code provides extensive opportunities to implement the property data and the specific boundary conditions for heat and mass transfer in the devices. The output of the overall simulation is predictions of scaling effects depending on the operating conditions. This knowledge can be used to optimise these conditions as well as the usage of anti-scalants and other pre-processing steps. The information of salt concentrations and the osmotic pressure at the surface of the membrane leads to better assessment of the mass transfer.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
- natural sciences physical sciences thermodynamics
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics computational fluid dynamics
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2002-MOBILITY-6
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
OIF - Marie Curie actions-Outgoing International Fellowships
Coordinator
VIENNA
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.