Project description
Developing molecular machines for information reading
Biological motors are able to perform and control many different complex functions thanks to the conversion of chemical energy into translational and rotational movement at the molecular level. Since 'read-out' tasks can translate information from DNA to RNA and from RNA to encode proteins, they are essential for life. With this in mind, the EU-funded ReadingMachine project aspires to design, construct and explore chemically fuelled linear molecular machines that can actively transport cargo and carry out read-out and other sophisticated tasks. To this end, it will develop [2]rotaxane-based molecular machines for information storage and read-out. This work could lead to an era of useful molecular nanotechnology.
Objective
The conversion of chemical energy into translational and rotational movement at the molecular level enables biological motors to perform and control a wide variety of complex functions. ‘Read-out’ tasks are essential for life as these processes can translate information from DNA to RNA and from RNA to encode proteins.
The ‘ReadingMachine’ project aims to design, construct and investigate chemically fuelled linear molecular machines capable of active transport of cargo, the read-out information and other sophisticated tasks. Specifically, I will develop [2]rotaxane-based molecular machines for information storage and read-out. I will first investigate the rational design of an orthogonal gating system on the track to allow for the unidirectional transportation of a macrocycle through the track by fuelled acid-base oscillations. By recognition of the chiral information of each station it docks at, the macrocycle will be able to report its position through a unique CD signal output. Harnessing the unidirectional motion of the macrocycle on the track, sequential information of the track will be non-destructive read-out by a series of CD outputs. Furthermore, the information that the macrocycle is reading will change the conformation of the macrocycle. As a result, the reading process will enable the molecular machine to be a 'smart' catalyst for enantioselective synthesis according to the signal it reads.
The controlled information storage and read-out process on molecular-level through a fuelled non-destructive reading machine is a tremendous challenge that could lead us towards the dawn of an era of useful molecular nanotechnology, for example ‘re-storage’ and ‘replication’ of stored information, and ultimately point the way for the use of such molecular machines to write (i.e. synthesize) sequence information as it is reading from the track.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules proteins
- engineering and technology nanotechnology
- natural sciences chemical sciences catalysis
- natural sciences biological sciences genetics RNA
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
M13 9PL Manchester
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.