Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Forward and reverse genetic approaches to understanding sphingolipid metabolism and functions in plants using the model bryophyte Physcomitrella patens

Project description

Insight into sphingolipid metabolism in plants

Sphingolipids are a ubiquitous class of eukaryotic lipids, and in plants they are implicated in various processes such as plasma membrane integrity, cell growth and programmed cell death (PCD) signalling. The EU-funded SMFP project aims to investigate a unique sphingolipid profile encountered in the bryophyte Physcomitrella patens that has proved difficult to study in other model organisms, such as Arabidopsis thaliana. Using a combination of forward and reverse genetics, and newly established analytical and genome editing tools, the researchers will explore the functions of complex sphingolipids and conserved mechanisms that regulate PCD in land plants. The project will offer novel insight into the metabolism and function of sphingolipids and the mechanisms that regulate PCD.

Objective

Sphingolipids are essential lipids that are ubiquitous among eukaryotes. Plants produce structurally diverse sphingolipids that are involved in many processes, including maintenance of plasma membrane integrity and microdomain formation, cell growth and division, polar secretion, and programmed cell death (PCD) signalling. They have primarily been investigated in Arabidopsis thaliana, for which an extensive genetic toolkit has been available for decades. Genome sequences and tools for genome editing are now available for a wide variety of species, offering a better understanding of metabolic and functional diversity, and enabling study of evolutionary history and ancestral functions. The bryophyte Physcomitrella patens is an early-diverged land plant and a relatively new model organism. Preliminary work revealed a unique sphingolipid profile for Physcomitrella, and diversification of gene families associated with the biosynthesis of glycosylinositol phosphorylceramides (GIPCs), the most abundant and diverse class of sphingolipids in plants. The precise functions of GIPCs have been challenging to study in Arabidopsis due to non-viable or pleiotropic mutant phenotypes, complex organ structure, and difficulties with extraction and detection of GIPCs. I propose reverse-genetic characterization of GIPC biosynthesis in Physcomitrella, where expansion of gene families and simple morphology will facilitate mutant analysis. Further, I will use Physcomitrella to dissect the connection between sphingolipid metabolism and PCD, which is well-recognized, but mechanistically obscure. I will perform a mutant screen with Physcomitrella protoplasts for resistance to the ceramide synthase inhibitor and PCD trigger Fumonisin B1. The causal mutations will be identified by next-generation mapping and characterized. Altogether, this work offers novel and unique insight into the metabolism and functions of essential and abundant metabolites, and the mechanisms that regulate PCD.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

GEORG-AUGUST-UNIVERSITAT GOTTINGEN STIFTUNG OFFENTLICHEN RECHTS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 162 806,40
Address
WILHELMSPLATZ 1
37073 Gottingen
Germany

See on map

Region
Niedersachsen Braunschweig Göttingen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 162 806,40
My booklet 0 0